

Supported by

Planning initial experiments in Divertor and Scrape-Off Layer TSG on NSTX-U

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Vlad Soukhanovskii

Joon-Wook Ahn Oliver Schmitz

NSTX-U Pre-Forum Meeting # 1 PPPL 16 December 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

DivSOL TSG leads and/or contributes to several upcoming milestones

• FY 2015

- R(15-1): Assess H-mode energy confinement, pedestal, and scrape off layer characteristics with higher B_T, I_P and NBI heating power
- R(15-3): Develop the physics and operational tools for obtaining high-performance discharges
- IR(15-1): Develop and assess the snowflake divertor configuration and edge properties

FY 2016

- R(16-1): Assess scaling and mitigation of steady-state and transient heat-fluxes with advanced divertor operation at high power density
- R(16-2): Assess high-Z divertor PFC performance and impact on operating scenarios

Considering initial / enabling XMPs and activities

- Diagnostic commissioning and calibrations
 - Calibrate and commission IR thermography (dedicated shots)
 - During bakeout, compare to thermocouples, evaluate surface layer effects
 - NBI power scan, I_p scan
 - Calibrate and commission neutral pressure gauges (dedicated shots)
 - Commission other SOL and divertor diagnostics (mostly piggy-back)
 - GPI, Langmuir probes, spectroscopy, cameras, bolometers, etc
- Systems commissioning and calibrations
 - Gas injectors, including divertor and SGI
- Plasma scenarios and control
 - Develop all-LFS fueling scenario
 - Develop low, medium, high triangularity shapes
 - Develop X-point and strike point control
 - Develop snowflake divertor configuration with pre-programmed coil currents, and start on feedback control algorithm

Considering initial XPs

- SOL and divertor characterization
 - Scan 1) P_{in} ; 2) $I_{p};$ 3) n_{e} evaluate data trends from various diagnostics
- SOL transport / fueling
 - L-H power threshold
 - Evaluate efficiency and H-mode access of fueling scenarios
- Snowflake divertor
 - Evaluate pedestal and divertor parameters as function of inter-null distance
- Radiative divertor
 - Characterize operating space of partially detached outer strike point using D₂ injection; possibly impurity injection
 - Likely to scan NBI power, I_p, shaping, gas flow rate, etc
 - Evaluate impact of 3D fields on divertor asymmetries, SP splitting, etc