

Diagnostics

B. Stratton

and the NSTX Research Team

Operations/Diagnostics + XMP/XP Status Meeting PPPL
January 28, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Coll of Wm & Mary Columbia U CompX

General Atomics

FIU INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

Nova Photonics

ORNL

PPPL

Princeton U

Purdue U SNL

Think Tank, Inc.

UC Davis

UC Irvine UCLA

UCSD

U Colorado

U Illinois

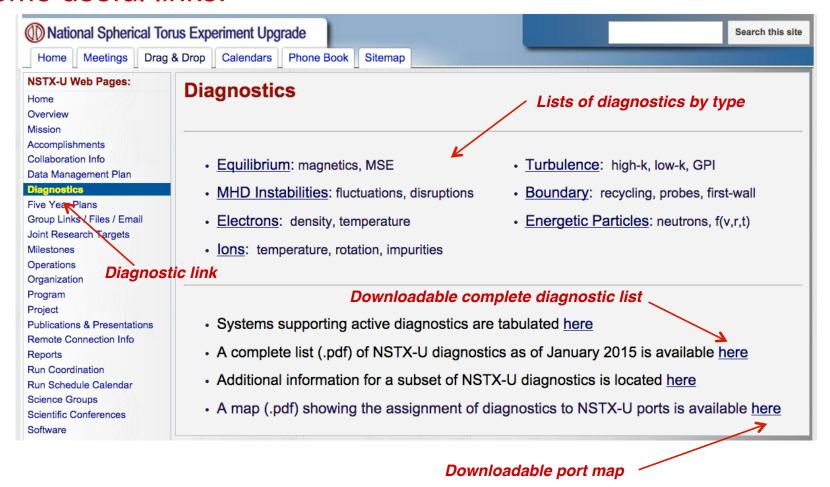
U Maryland U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

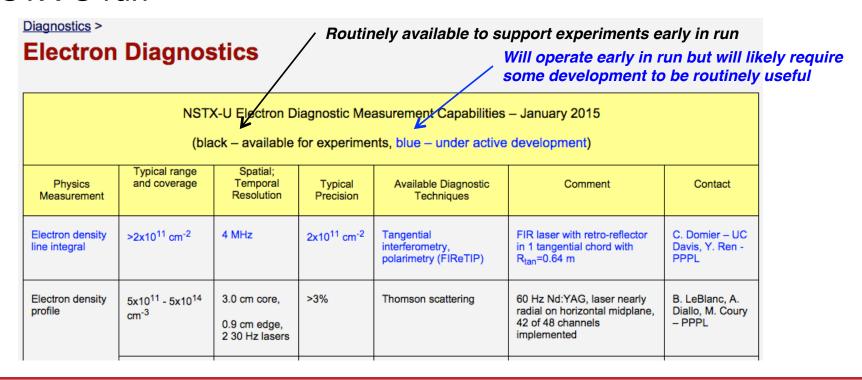

X Science LLC

Outline

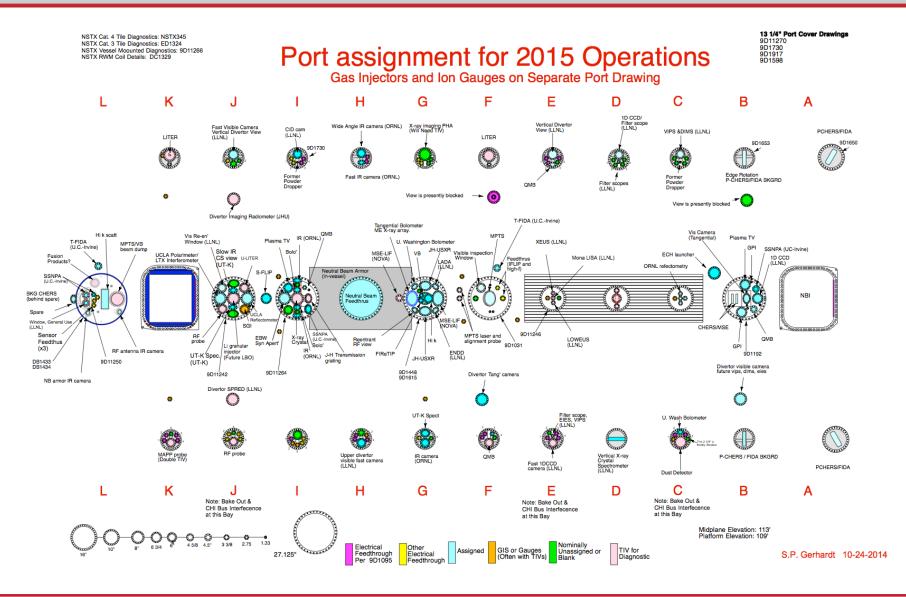
- NSTX-U diagnostic website
- Overview of status of diagnostic installations
- Status of some specific diagnostics
 - Exceptions:
 - Magnetics diagnostics: Research Operations talk (S. Gerhardt)
 - Boundary Diagnostics: Boundary Operations talk (R. Kaita)
 - RF-Specific Diagnostics: RF Operations talk (J. Hosea)
- Brief discussion of future diagnostics for second NSTX-U campaign and beyond
- Summary

NSTX-U Diagnostics Website

Some useful links:



Send corrections and updates to B. Stratton



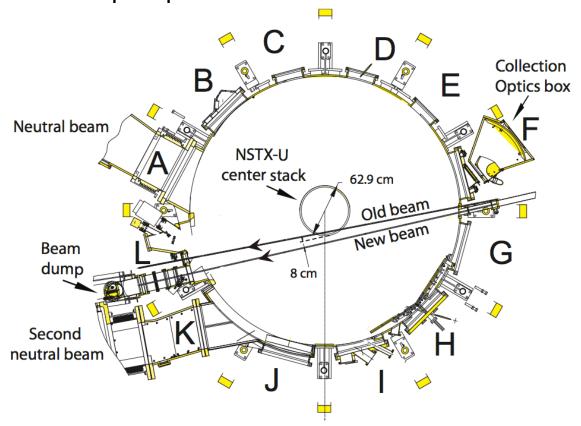
NSTX-U Diagnostics Lists

- Organized by physics measurement
- Contains specific information on parameters measured, time and spatial resolution, precision, and contact person(s)
- Lists only systems expected to be operational during 2015 NSTX-U run

Port Map

Overview of Current Status

- Nearly all diagnostics were removed from NSTX at the start of the upgrade to allow construction to proceed
- Nearly all NTSX diagnostics being re-installed for NSTX-U
- New diagnostics added
- Extensive rearrangement of diagnostics required to accommodate loss of port space due to installation of second neutral beam at bay K
 - Required new port covers at Bays I and J to accommodate more systems
 - Initial assignment of diagnostics to ports and design of new Bay I and J port covers performed by L. Roquemore
 - Subsequent development of plan and management of diagnostic installations provided by R. Ellis, S. Gerhardt, R. Kaita, and B. Stratton


Overview of Current Status - Continued

- Diagnostic installations started summer 2014
- Diagnostic work since then has focused on completion of invessel installations, in-vessel calibrations, installation of vacuum interfaces (windows and TIVs), and installation of diagnostic hardware that is directly coupled to vacuum vessel
- Small number of vacuum interfaces remain to be installed in short vacuum vent before vessel bake
- Emphasis has shifted to installation work outside the vacuum boundary
- Goal is to have diagnostics ready for start of physics program in June 2015
- Remainder of talk will review status of some specific diagnostic systems

MPTS

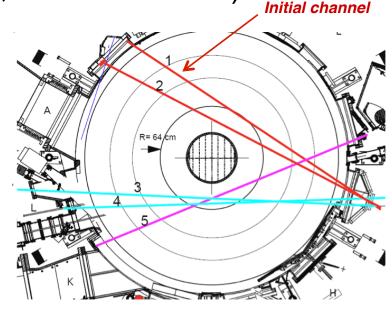
- MPTS laser had to be re-aimed to miss new centerstack
 - New ports on vacuum vessel required
 - Light collections optics needed to be re-aimed and focused
 - New beam dump required

MPTS - Continued

- Status of installation
 - New ports installed on vessel
 - Light collection optics box rebuilt and re-installed
 - Laser beam entrance flight tube nearly complete
 - New laser optics box on south wall of TC installed
 - Laser exit flight tube complete up to TIV
 - "Phase 3" polychromators rebuilt improved error bars expected
- Installation of remainder of exit flight tube will start soon
- 42 spatial channels improved spatial resolution in pedestal
 - Implemented in 2011
- Plan to have system ready for calibration in April
- M. Coury will join MPTS group

CHERS Diagnostics

- Toroidal CHERS: T_i(R), V_{tor}(R)
- Edge Doppler Spectroscopy (ERD): T_i(R), V_{tor}(R)
- Poloidal CHERS: V_{pol}(R)
- Real-Time Toroidal CHERS: V_{tor}(R)
 - 4 channels
 - Up to 5 kHz sampling rate
 - Will be used for feedback control and will produce archived data
 - Implemented in 2011
- All systems re-installed and calibrated
- Issue for Toroidal CHERS is unwanted contribution of heating beam 2 light to signal from heating beam 1. An XMP is planned to explore ways of dealing with this.

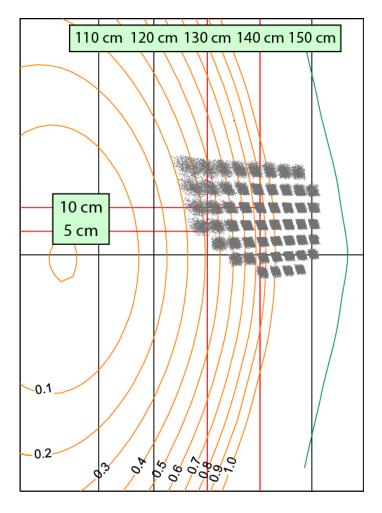

MSE

- MSE/CIF: B-field pitch, q(R) with reconstruction, 18 spatial channels
- MSE/LIF: B-field pitch, |B|, q(R) with reconstruction, pressure profile, 10 spatial channels to be expanded to 32 over time
 - Implemented in 2011
- MSE/CIF & MSE/LIF: E_r(R)
- Both systems re-installed and spatial calibrations performed
- Y. Sechrest will join Nova Photonics MSE group

Electron Density

FIReTIP (C. Domier – UC Davis, Y. Ren – PPPL)

- System had to be moved due to loss of Bay K for diagnostics
- Will have one spatial channel with R_{TAN} =0.64 m for 2015 run with additional channels in the future
- 4 MHz sampling rate
- 5 kHz for real-time control
- Quadrature Reflectometer (S. Kubota UCLA)
 - Measures density fluctuations
 - 30-75 Ghz, 16 channels
 - $n_e l \sim 1.1-7 \times 10^{13} \text{ cm}^{-2}$
 - 2.5 MHZ bandwidth


Beam Emission Spectroscopy

New 2-D fiber holder will provide better radial and poloidal

coverage of r/a~0.4-SOL region

 Fibers will be installed in new holder in February

- 48 detector channels
- D. Smith, G. McKee UW

Impurities

- New tangential bolometer (L. Delgado-Aparicio)
 - 40 radial channels, 2-3 cm resolution
- New ME-SXR arrays (K. Tritz, J. M. Burgos JHU)
 - Edge: r/a~0.6-1.1, 1 cm resolution
 - Core r/a~0-1.1, 3 cm resolution
- New EUV spectroscopy capability will cover 0.5-40 nm region with high spectral resolution (P. Beiersdorfer - LLNL)
 - XEUS (0.5-6-xx nm)
 - MonaLisa (6-22 nm)
 - LoWEUS (22-40 nm)
- Divertor SPRED spectrometer (V. Soukhanovskii LLNL)
- Many other spectroscopic and filtered camera diagnostics listed in diagnostic tables

Neutron Detectors

- 4 fission chambers
 - 1 ms time resolution
 - 20% absolute accuracy
- 4 scintillator detectors
 - 4 μs time resolution
- Fission chambers absolutely calibrated in November using new ²⁵²Cf source
- Important role for fission chambers is to document total neutron fluence per year
 - Needed to ensure that PPPL remains classified as "below a Category 3 nuclear facility"
- D. Darrow is now responsible for neutron diagnostics

Fast Ion Diagnostics

- Solid State Neutral Particle Analyzers (D. Liu, G. Z Hao, W. Heidbrink – UC Irvine)
 - Bay I: active tangential view
 - Bay L: active radial view
 - Bay B: passive (background) view
 - 3 energy bands: >25 keV, >45 keV, >65 keV,
 - 10 ms time resolution in current mode
- sFLIP, Faraday Cups, s-FIDA, and t-FIDA reinstalled
- Measurement of fusion source profile via diode array will be implemented later in the run (W. Boeglin – FIU)
 - 6-8 channels initially
 - Will be expanded later

Future Diagnostics

- Pulse Burst Laser System for MPTS
- High-k Scattering
 - New implementation will provide improved k-theta measurement
- Additional FIReTIP channel(s)
- Expanded bolometry
 - Poloidal arrays
 - Divertor bolometry
- Imaging X-Ray PHA
- Imaging X-Ray Crystal Spectrometer
- High-throughput Accurate wavelength Lens-based (HAL)
 Spectrometer (R. Bell)
- Others...

Conclusion

- Goal is to have diagnostics ready for start of physics program in June 2015
- The best information on the current status of a diagnostic and its capabilities is provided by the diagnostic contact(s)