

NSTX-U Commissioning Phase

Coll of Wm & Mary Columbia U CompX

General Atomics

FIU INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

Nova Photonics

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Illinois

U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

X Science LLC

Devon Battaglia

Dennis Mueller

Pre-forum Meeting #2 January 29, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

CD-4 Will Establish Plasma Breakdown

- Requirement is I_p > 50 kA at 0.5 T (transiently)
 - Pre-programmed OH and EF coils
 - CS bake and He GDC for wall conditioning
 - Ohmic heating (no beams)
 - Establish pre-fill pressure range for breakdown, ECH pre-ionization timing and optimize PF current evolution up to 20ms
 - Requires plasma TV, magnetics, neutrons, filterscopes
- If time permits, try gap and I_p control starting at 20 ms
 - EFIT development would benefit from ~450 kA

Coordinating the NSTX-U Commissioning Activities is the Responsibility of the Physics Operations Group

- Commissioning will produce a scenario useful for XPs, calibrate diagnostics, check systems
 - B_T ~ 0.5 T, I_p ~ 1.0 MA, beam heated, > 1s flattop
 - Reliable H-mode timing
 - PFC conditioning recipe
 - Boronization (1 1.5 weeks) + He GDC
 - Most likely near DN (small d_{rsep})
 - Diverting with feed forward PF1/2
 - Initial understanding of DCPS impact on plasma operation
- Upcoming slides outline plans and goals for four weeks
 - We will try to make commissioning period as short as possible
 - Please contact Mueller and Battaglia via email to add commissioning activities, XMPs, give comments, etc.

First 2 weeks: Magnetics, Breakdown Scenarios (1)

- Magnetics calibration (Myers) [1 day]
 - Single and multiple PF, OH and TF waveforms
- Breakdown scenario development (Battaglia) [1 day]
 - Design front-end of discharges for 0, 12, 24 kA precharge
 - Compatible with DCPS (OH/TF heating ΔT)
 - Establish PF3/5 programming vs. OH precharge level
 - Optimize prefill, ECH timing, shot cycle activities (GDC, OH/TF cooling)
 - Document impact of bake on impurity, breakdown (compare to CD4)
 - Check I_D, vessel current in real time inputs

First two weeks: I_p & Gap Control, Vertical Stability (2)

- I_p and R control on NSTX-U (Mueller) [3 days]
 - Tune R feedback gains at 20 ms
 - Develop early fueling scenario for MHD avoidance
 - Optimize shape evolution to minimize l_i
 - Demonstrate I_D control up to ~500kA flattop, low-κ cross section
 - Optimize outer gap feedback at highest I_p
 - Initial checkout of vertical stability feedback
 - PF1/2 feed forward to bring X-points in vessel (probably still oval)
 - MPTS checkout, EFIT checkout
- Neutral beam checkout (Mueller) [1 day]
 - Fire each beam individually
 - Check beam signals, including real-time signals
 - Beam diagnostic checkout (dedicated calibration XMPs later)

Next two weeks: L-mode I_p Ramp-up, H-mode Access (1)

- L-mode development (Mueller) [2 days]
 - Develop beam heating scenario for I_p ramp up to 1 MA
 - Ramp κ to establish vertical stability limits in L-mode flattop
 - Might have to be lower than 1 MA for long (1s) L-mode flattop
 - Optimize feedback, V_{loop} , shape evolution to expand κ range
 - Divert using PF1/2 feed forward
 - Possibly do boronization in middle of XMP to evaluate impact on wall
 - Evaluate L-mode density control with LFS flow rate control
- H-mode entry at SOF (Battaglia) [1 day]
 - Beam heating, CS gas fueling, GDC parameters for reliable H-mode entry at start of flattop

Next two weeks: H-mode Fiducial Development

- Increase H-mode flattop (Mueller) [3 days]
 - Develop fiducial with steady, ELMing H-mode
 - Investigate H-mode entry during I_p ramp
 - Achieve diverting plasma with an inner gap for entire flattop
- Commission rtEFIT, ISOFLUX (Boyer) [1 day]
- XMPs to commission diagnostics and systems outside of control aspects (Phys Ops and RC must coordinate)
 - Dud-detector (Gerhardt)
 - He GDC, gas flow rate optimization (Battaglia)
 - RWM coil commissioning
 - RF commissioning
 - CHERs, MSE

