

Microstability analysis of NSTX plasmas

Clarisse Bourdelle,

R.E. Bell, W. Dorland^{*}, G.W. Hammett,
W.A. Houlberg^{**}, S. Kaye, B.P. LeBlanc,
D. McCune, F. Paoletti^{***}, G. Rewoldt,
E.J. Synakowski *Princeton Plasma Physics Laboratory*

*University of Maryland ** ORNL *** Columbia University

Outline

- Generalities
- Stability analysis of NBI and RF plasmas
 - Effect of geometry and β
 - Effect of collisions
 - Effect of T_i/T_e
- Non-linear simulation
- Conclusions and perspectives

🛈 NSTX ——

Generalities

- Tool: linear local gyrokinetic electromagnetic code solve Vlasov+Maxwell eq. : initial value code GS2
- Purpose:
 - identify unstable modes
 - isolate key parameters for stabilization
- Unique features of Spherical Tokamak:
 - different curvature/ ∇B drifts: more trapped particles, passing particles more on good curvature side

- β higher $\longrightarrow \delta B \nearrow + \text{ stronger Shafranov shift}$

The 2 plasmas analyzed

NBI: #104001, 0.28 s 1.5 MW, $\beta_T \sim 9$ % $B_{T0} = 0.4 \text{ T}$ $n_{e0} = 4.2 \ 10^{19} \text{ m}^{-3}$ $V_{\phi}^{\text{max}} = 200 \text{ km/s}$ RF: #104474, 0.21 s 2 MW, $\beta_T \sim 8$ % B_{T0} = 0.3 T n_{e0} = 4.2 10¹⁹ m⁻³ V_{\overline{max}} = 22 km/s}

Microstability analysis using GS2, NBI heated plasma, $\beta_T \sim 9$ %

• $k_{\theta}\rho_i < 1$: stable for r/a < 0.6 near edge $R\nabla T_i/T_i$ up to 20

• $k_{\theta}\rho_i >> 1$ ETG modes unstable across most of r/a

 $\gamma_0^{\text{max}} \sim < \gamma_E$

• **ExB** shearing rate, γ_E , dominated by $\nabla_r V_{\phi}$ NCLASS, W. Houlberg

RF heated plasma, $\beta_{\rm T} \sim 8 \%$

- $k_{\theta}\rho_i < 1$: stable for r/a < 0.5 near edge large $R\nabla T_i/T_i$ $\gamma_0^{max} \sim \gamma_E$
- $k_{\theta}\rho_i >> 1$ ETG modes unstable across most of r/a
- $\gamma_{\rm E}$ sensitive to $\nabla_{\rm r}$ P, V_{θ}

Understanding dependence on aspect ratio not straightforward

- Lower A found stabilizing Rewoldt et al q_{95} and β id. I_p and $B_T \neq$
- No effect of A Kotschenreuther et al $\beta \neq$ kept near β_c
- Here, EFIT copying NSTX same B_{T0} and β with A = 3 $\alpha \sim 0.7$ vs 2, stabilizing, s/q = 1.7 vs 0.9, destabilizing

Comparison real NSTX β with a lower β

- β decreased in EFIT, consistently with lower α
- $\nabla T/T$, $\nabla n/n$ identical, s and q similar (within 10%)

Here, higher β destabilize ETG not systematic

 $\beta \not : \alpha \not$ and $\delta B \not$

Effect of collisions on TEM

- TEM stabilized by collisions
- Actual v_e high enough to stabilize TEM

Effect of T_i/T_e on a spectrum

• High T_i/T_e : destabilizing for ETG, stabilizing for ITG

#104001 at 0.28 s and r/a=0.575

🛈 NSTX ——

Conclusions

- ETG:
 - High β destabilize
 - High T_i/T_e strongly destabilize
- ITG
 - High T_i/T_e stabilize
- TEM
 - Collisions stabilize

Unstable ETG consistent with NSTX evidence that heat electron transport dominates

Perspectives

- T_i/T_e variation tested experimentally in plasmas with HHFW where $T_i/T_e \sim 1/3$, check consistency with χ_e given by TRANSP analysis (need solve power balance issues)
- Non-linear simulations: if elongated radial structures called streamers then higher electron transport expected from ETG
- Microwave scattering could establish ETG existence in ST