

H-mode Access and Characterization with Neutral Beam Injection on NSTX

C.E. Bush^a, R. Maingi^a, M.G. Bell^b, R.E. Bell^b, E.D. Fredrickson^b, D.A. Gates^b, D.W. Johnson^b, R. Kaita^b, S.M. Kaye^b, S. Kubota^c, H.W. Kugel^b, B.P. LeBlanc^b, R. Maqueda^d, S. Medley, J.E. Menard^b, D. Mueller^b, M. Ono^b, F. Paoletti^e, S. Paul^b, Y.-K.M. Peng^a, A.L. Roquemore^b, S.A. Sabbagh^e, V.A. Soukhanovskii^b, D. Stutman^f, E.J. Synakowski^b, G. Taylor^b, and S.J. Zweben^b. *For the NSTX Team.*

^aOak Ridge National Laboratory, Oak Ridge TN, 37831 USA ^bPrinceton Plasma Physics Laboratory, PO Box 451, Princeton, NJ, 08543 USA ^cUniversity of California at Los Angeles, Los Angeles, CA 90095 USA ^dLos Alamos National Laboratory, Los Alamos, NM, 87545 USA ^eColumbia University, New York, NY, USA ^fJohns Hopkins University, Baltimore, MD, 87545 USA

NSTX Results Review

Princeton Plasma Physics Laboratory -- Princeton, New Jersey

September 18-21, 2001

CEBush / NSTX Results Review / 010920

🖵 🔤 orni

Department of Energy

📶 🖬 🚛 UCDavis 📳 UCLA 🚍 🗍 🐺

Outline and Motivation

- H-modes with high $\tau_{\rm E}$ and dW/dt obtained.
 - -- limited by duration of ELM free H-mode (need for high β).
- Well defined edge transport barrier as evidenced by steep n_e gradient from both TS and reflectometry.
 - -- supported by EBW and GPI diagnostics.
- Evidence for turbulence suppression (increase) at L-H (H-L) transition and during H-mode (Mirnov coils, GPI, reflectometry).
- Able to get ELMy H-modes on demand: Need more control.
- Power threshold determined for a set I_p, B_t, n_e :
 - -- Proper scaling for P_{th}?
- Evidence for poloidal plasma rotation.
- Summary and Conclusions.

9/20/01 8:20 AM

ELM-free H-modes with $\tau_{\rm E} \sim 120$ ms Have Been Obtained. -- Lower Single Null Divertor (LSND), P_b = .83 - 2.4 MW

- Same P_b pulse
- τ_E improves
- Stored energy increases
- Central P_{rad} increased during H-mode
- D_{α} drop \Rightarrow H-mode
- Emission from EBW increases 3 fold.
 ⇒ steeper edge n_e gradient. (G. Taylor)

3

Confinement In NSTX Is H-mode Magnitude, with or without H-mode Signatures

• $dW/dt \sim 0$ for most data except H-mode points, which have large dW/dt

S. Kaye

CEBush / NSTX Results Review / 010920

Edge n_e pedestal height increases during H-mode.

Reduced D_{α} Emission is Observed at the Divertor Strike Points at the L-H Transition

GPI Shows Edge Transport Barrier Goes Away within 30 µs at H-L Transition

R. Maqueda S. Zweben

Edge Fluctuations Reduced During H-mode Phase (Scrape-Off Layer and Core Are Unaffected)

ELMing H-modes Obtained in NSTX Are Similar to Those in Conventional Aspect Ratio Tokamaks

The Edge n_e Peak goes away at ELM, but returns Between ELMs. Large ELMs Reach Deep Inside Plasma.

H-mode 'Dithers' Appear When NBI Power Approaches L-H Threshold Power

- Same plasma current. B_t = 0.45T, n_e
- NBI power near
 P_{L-H}
- Dithers show up in D_{α}
- τ_E improves slightly
- Stored energy increases slightly

The Proper Power Threshold Scalings for ST's Have Yet to be Determined

• Comparison to the International H-mode database scaling: Global Parameters $P_{th} = 0.65 n_e^{0.93} B_t^{0.86} R^{2.15}$ (MW, 10²⁰/m³,T,m)

= 50 - 60 kW = 0.06 MW for NSTX

 P_b (threshold) = 0.83 MW, from threshold experiment $P_{th} = P_{tot} = P_{OH} + P_b = 2 MW \Rightarrow 2 MW / 0.06 MW \sim 33 times$

or

Using
$$P_{Loss}$$

 $\dot{P} = \dot{w}_{b} + \dot{w}_{p} = 470 \text{ kW} + 450 \text{ kW} = 920 \text{ kW}$
 $P_{th} = P_{tot} - \dot{P} = 1.1 \text{ MW} \Rightarrow 1.1/0.06 \text{ MW} \sim 18 \text{ times}$

• Compare with Canonical Profiles Transport Model: Local Parameters $P_{th} (MW) = 0.13 (Z_0 + Z_q - Z_n) RT_e(a)K$ Where $P_{tot} = P^{con} - P^{rad} > P_{th}$, $K = nX = a^2n / 2\tau_E$, $Z_q = 3(1-1/q_a)$ $Z_q = 3 (1 - 1/q_n) \sim 2 - 2.5$, $Z_n = -an'_a/n_a$ $\Rightarrow P_{th} = 100 \text{ kW to} > 2 \text{ MW for NSTX}$ (Dnestrovskij - Proc, 26th EPS Conf.)

9/20/01 8:20 AM

USXR Arrays Show Filaments Rotating in the Outboard Plasma Periphery

CEBush / NSTX Results Review / 010920

D. Stutman

STX _____

Summary and Conclusions

- ELM-free and ELMy H-modes obtained on NSTX using NBI.
 - only obtained in Lower Single Null Divertor (LSND).
 - obtained with a variety of heating; NBI, RF (HHFW), NBI + RF
- Best H-mode confinement: $\tau_{\rm E} \sim 120$ ms, ≤ 1.3 times ITER98pby2 scaling.
- Turbulence suppression is observed at L-H transition.
 - scanning edge reflectometer, Gas Puff Imaging, center stack Mirnov
- NSTX H-mode has well defined edge transport barrier; large edge n_e gradient.
 - edge n_e profiles from Thomson scattering and edge scanning reflectometer.
 - signal due to EBW, GPI.
- Power threshold determined, with $P_b < 840$ kW at 0.9 MA.
 - $P_{th}(NSTX) >> P_{th}(International H-mode Database)$: Global parameters.
 - Beginning to compare $P_{th}(NSTX)$ with local models such as the CPTM.