HHFW Power Absorption Modeling -Towards a Comparison of Modeling Codes

> C.K. Phillips (PPPL) NSTX RF Team P.T. Bonoli (PSFC-MIT) E.F. Jaeger (ORNL) T.K. Mau (UCSD) A. Rosenberg(P.U.)

Unique and Important Features of HHFW Heating

- densities and temperatures in ST comparable to conventional tokamak but B field is an order of magnitude smaller so dielectric constant is high
- Using $\omega \sim k_{\perp} V_A \sim N\Omega_{ci}$ and $v_{th} \sim \rho_i \Omega_{ci}$ find:

 $\mathbf{k}_{\perp}^{2} \rho_{\mathbf{i}}^{2} \sim \mathbf{N}^{2} \beta \gg 1$ in an ST (FLR questionable)

• Using $\omega \sim \mathbf{k}_{\perp} \mathbf{V}_{\mathbf{A}} \sim \mathbf{N}\Omega_{\mathbf{ci}}$ find:

$$\frac{\lambda_{\perp}}{a} \approx \frac{0.45}{N a} \frac{\sqrt{A_i}}{Z_i} \frac{1}{\sqrt{\frac{n_i}{10^{19}}}} \ll 1$$

so WKB may be ok for propagation except near cyclotron harmonics?

- Plasma β is high so electron TTMP damping is strong relative to conventional tokamaks
- $B_p \sim B_T$ so sheared 2D equilibrium likely to be important

Five Different Codes Will Be Compared for NSTX Data

- HPRT warm plasma ray paths; WKB full hot plasma absorption and wave polarizations; 2D EFIT equilibrium; data for profiles
- CURRAY cold plasma propagation; local hot plasma absorption using order reduction; 2D EFIT equilibrium; polynomial fits to profile data [being upgraded to hot plasma model]
- METS 1D full wave hot plasma, no FLR approximation; polynomial fits for profiles; B_T ~ 1/R; |B| includes B_p specified through q profile
- TORIC 2D full wave hot plasma, FLR approximation used; moments description for equilibrium; [can also use EFIT]
- AORSA-2D 2D full wave hot plasma, no FLR approximation; analytically specified equilibrium and profiles

NSTX Data Used for Comparisons

• For APS, will use shots 105830 (high T_{eo} case) and 105913 (HHFW +NBI case)

Good Qualitative Agreement Between HPRT and METS in 1D Limit

•HPRT run with:

1 ray launched on midplane $B_p = 0$

to mimic 1D METS model along midplane.

•Remaining differences may be due to:

equilibrium profile differences
METS used fits to plasma profiles and approximate B field profile
HPRT equilibrium is up/down asymmetric

•WKB vs. full wave models

Poloidal Field Shifts Power Absorption Towards Plasma Core

Poloidal Field Strongly Modifies HPRT Ray Paths

Qualitatively Similar Power Deposition Found with CURRAY and HPRT

•More detailed comparisons using same equilibrium input underway

Approximate Absorption Models Under Consideration for TORIC

- similar to METS profile

• zero ion FLR model may be adequate for electron damping regime in TORIC [Ono has shown P_e in zero ion FLR limit nearly same as full model if $\beta_i < 0.5$]

reduced order corrections to ion damping terms under study

AORSA-2D Provides Most Complete Model

- will be used to verify range of validity of faster but less complete models

- Qualitative agreement found among the various codes:
 - Strong single pass electron damping, mostly off-axis
 - Some innercore absorption due to 2D equilibrium and B_p
- Detailed comparisons to be done for 2 NSTX discharges:
 - 105830 high Te0 case
 - 105913 HHFW combined with NBI
- Codes to be benchmarked against experimentally measured power deposition profiles when data is available