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Summary of Experimental Observations

• New sub-ion cyclotron frequency instability was observed on NSTX.

• The frequency spectrum has many peaks, hierarchy of peak spacing.

• Frequency scales with Alfvén speed.

• Instability is driven by fast, super-Alfvénic NBI particles.

• The spectrum of excited instabilities is sensitive to the injection angle

of the NBI sources.

• Often a low frequency cut-off; no activity below  fc ≈ 0.4-0.6 MHz.

• Modes observed with Mirnov coils and reflectometer.

• Modes are bursting or quasi-continuous.

• Enhanced fast ion losses correlated with mode activity not observed.



Issue raised was possibility of
stochastic ion heating by CAE

• Measured Ti - Te larger than is comfortably
explained - implied new physics.

• Recent theoretical work by R. White
inspired timely interest CAE.

• CAE presence correlated with δδT anomaly.

• Previous experimental studies of stochastic
ion heating by drift-Alfvén waves bolstered
this idea [McChesney, et al. PRL 59 1436 (1987)].



Estimation of heating power from
given mode spectrum

• An estimate of the heating power can be made
from the total energy in the wave and the damping
rate,
– Pheat(MW) ≈ Ewave damp

–                          ≈ 4x10-4< B2(G)>vol [V/Vplasma]  (104/s)
–                          ≈ Nmode<[ n/n(%)]2>vol [V/Vplasma]  (104/s)

• For 1 MW of ion heating, Brms(all modes) ≈ 50 G;
–  δB/B ≈ 50/3500 ≈ δn/n ≈ 1.5 %
–  peak measured mode amplitude δn/n ≈ 0.1-0.2 %



Mode amplitude measured with
Reflectometer, but coils more sensitive

• The reflectometer
measures density
fluctuations.

• The density fluctuations
are related to CAE
amplitude by:
–  δBθ/B ≈ k||/k⊥ δn/n

–  δBθ/B ≈ VA/Vb||(1-ωci/ω)δn/n
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Reflectometer has potential for radial
profile measurement of mode

• The reflectometer step scans the frequency (cut-off
density), dwelling at each frequency for ≈ 4 ms.
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Goals of XP #32

• Use choice of source to control CAE amplitude
(not fruitful).

• Beam voltage scan to control CAE amplitude.
– Effect of mode amplitude on ion temperature.
– Implies modes can't access much beam power?

• New measurements of mode amplitude with
heterodyne reflectometer.
– Perhaps better information on spatial structure.

• Optimized beams for ion temperature
measurements.



Reference shot, as is common,
had only a few clear modes

• Standard NBI
pulse (source A) at
80 kV.

• Mode amplitude is
low, but several
clear modes.

• Ion temperature
data not available
yet.



At 70 kV, modes are absent.

• Very sharp velocity
threshold in
resonance
condition?

• Implies that there is
not much beam
energy accessible
to modes?

• Consistent with
rapid mode quench
at end of NBI.



Provisional ion temperature agrees
reasonably with TRANSP simulation

• Simulates ion
temperature assuming
Chang-Hinton
neoclassical transport.

• Ion temperature still
somewhat higher at
mid-radius.

• Still awaiting blessed
ion temperatures.
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Higher beam voltage can drive
more modes

• Source B (0.22 -
0.26s) is at 90 kV.

• Source C (0.28 -
0.32s) is still at 80
kV.

• Source A is at 80
kV.



Ion temperature shows poorer
agreement with TRANSP simulation

• Low on edge, high in
core.

• Still one times
neoclassical
simulation.

• Neoclassical model
may be challenged in
ST geometry?

106218a02_0.23 s

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.2 1.4

Major Radius (m)

T
em

pe
ra

tu
re

 (
ke

V
)

CHERS

TRANSP



But mode amplitude depends on
other factors as well.



80 kV beams give typical mode
response.



Provisional ion temperature
agrees outside of core region?
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70 kV and 60 kV beams barely
excite modes, as before



Even beams together, with ≈ 2 MW,
result in very small modes

• Source A is at
70 kV, Source C
is at 60 kV.

• Total power is 2
MW, more than
for 90 kV
source.

• Plasma stored
energy is lower -
poorer
confinement?



Summary

• Mode amplitude controlled through beam voltage,
threshold to drive mode is around 70 kV.

• Threshold is not a power issue, two low voltage sources
with more power still don't drive modes.

• Good CHERS data available, but waiting for analysis
method to be developed.

• Some heterodyne reflectometer data; confirms earlier
estimates of mode amplitude; new data not all analyzed.

• TRANSP analysis started with first cut for most shots of
interest.

• Theoretical modeling will be challenging.



CAE Modes can be quasi-continuous
or bursting in character

• Bursts yield growth/damping rates ≈ 104/s or γ/ω ≈ 0.15%.

• All modes grow/damp together.
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Modes are driven by “bump-on-tail”
in perpendicular energy

• Vfast / R ≈ 700 kHz, n
number of modes
should be greater than
unity.

• “Bump-on-tail” may
be consistent with
beam injection
geometry.
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