Summary of XP 32: Effect of
CAE on Plasma Performance

Reported by E. Fredrickson for the
CAE study group



New sub-ion cyclotron frequency instability was observed on NSTX.
The frequency spectrum has many peaks, hierarchy of peak spacing.
Frequency scales with Alfvén speed.

Instability is driven by fast, super-Alfvénic NBI particles.

The spectrum of excited instabilities is sensitive to the injection angle
of the NBI sources.

Often alow frequency cut-off; no activity below f.» 0.4-0.6 MHz
Modes observed with Mirnov coils and reflectometer.
Modes are bursting or guasi-continuous.

Enhanced fast ion |osses correlated with mode activity not observed.



|ssue raised was possibility of
stochastic 1on heating by CAE

Measured Ti - Telarger than is comfortably
explained - implied new physics.

Recent theoretical work by R. White
inspired timely interest CAE.

CAE presence correlated with dT anomaly.

Previous experimental studies of stochastic
lon heating by drift-Alfvéen waves bolstered
this 1dea [McChesney, et a. PRL 59 1436 (1987)].



Estimation of heating power from
given mode spectrum

* An estimate of the heating power can be made

from the total energy in the wave and the damping
rate,

o Pheat(MVV) » EWave Ydamp
- » 4x104<3BG)> o [VIVyagmal ¥ (1049)
_ ” Nmode<[6n/ n(%)] °> vol [V/ Vplasma] Y (104/ S)

* For 1 MW of ion heating, B, (al modes) » 50 G;
— dB/B » 50/3500 » dn/n » 1.5 %
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Mode amplitude measured with
Reflectometer, but colls more sensitive
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measures density
fluctuations.

* The density fluctuations
arerelated to CAE
amplitude by:

— dB,/B » k/k. dn/n
— dB,/B » V,/V,,(1-w /w)dn/n



FREQUENCY (MH2z)

Reflectometer has potential for radial
profile measurement of mode

* Thereflectometer step scans the frequency (cut-off
density), dwelling at each frequency for » 4 ms.

“O”-mode cut-off density
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Goals of XP #32

» Use choice of source to control CAE amplitude
(not fruitful).

* Beam voltage scan to control CAE amplitude.
— Effect of mode amplitude on ion temperature.

* New measurements of mode amplitude with
heterodyne reflectometer.

e Optimized beams for ion temperature
measurements.



Reference shot, as 1s common,
had only a few clear modes
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At 70 kV, modes are absent.

* Very sharp velocity o

threshold in
resonance
condition?

o Impliesthat thereis:
not much beam
energy accessible
to modes?

« Consistent with .
rapid mode quench .
at end of NBI.
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Ti (keV)

Provisional 1on temperature agrees
reasonably with TRANSP ssmulation
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e Simulatesion
temperature assuming
Chang-Hinton
neoclassical transport.

 |on temperature still
somewhat higher at
mid-radius.

« Still awaiting blessed
lon temperatures.



Higher beam voltage can drive
more modes

.« SourceB (0.22- FT T T
0.26s) isat 0 kV. |
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e SourceA isat 80
kV.




Temperature (keV)
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agreement with TRANSP simulation

e Low onedge, highin
core.
o Still onetimes

neoclassical
simulation.

 Neoclassica model

may be challenged in
ST geometry?



But mode amplitude depends on
other factors as well.
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80 kV beams give typical mode
response.

SMM_LEET0_0:ANPUT_01 for shot 106232
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Temperature (keV)

Provisional 1on temperature
agrees outside of core region?

I 106232a01_0.23s .
1.0 [~

0.8 [~

TRANSP
0.6 —
04 —
0.2
0.0_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0.9 1.0 1.1 1.2 1.3 1.4 15

Major Radius (m)



/0 kV and 60 kV beams barely
exclte modes, as before
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Even beams together, with » 2 MW,
result in very small modes
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Mode amplitude controlled through beam voltage,
threshold to drive mode is around 70 kV.

Threshold is not a power issue, two low voltage sources
with more power still don't drive modes.

Good CHERS data available, but waiting for analysis
method to be devel oped.

Some heterodyne reflectometer data; confirms earlier
estimates of mode amplitude; new data not all analyzed.

TRANSP analysis started with first cut for most shots of
Interest.

Theoretical modeling will be challenging.



CAE Modes can be quasi-continuous
or bursting in character

e Burstsyield growth/damping rates » 10%/s or gw » 0.15%.

 All modes grow/damp together.
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Peak rms fluctuation
level (0.5-2.0 MHZ2)
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» 10-15mG



Modes are driven by “ bump-on-tail”
IN perpendicular energy

A wolwe—kViat=0 o Vfast/ R » 700 kHz, n

N number of modes
should be greater than
unity.

v« “Bump-on-tail” may
be consistent with
beam injection

B geometry.




