Electron Bernstein Wave Research on CDX-U and NSTX

Presented by

Gary Taylor

In collaboration with

Phil Efthimion and Brent Jones

- EBWs offer potential for local heating, current drive and T_e(R,t) diagnostic in ST plasmas
- EBW emission yields information about viability of EBW heating and current drive

Presented at the NSTX Research Review September 19, 2001

Outline

- Brief review of EBW conversion to X-mode
- Initial CDX-U EBW emission results without local limiter
- EBW emission enhancement during NSTX H-modes
- CDX-U EBW emission results with a local limiter
- Plans for EBW current drive and heating

EBW Emission Measured on CDX-U and NSTX via Mode Conversion to Fast X-Mode

• If L_n is steep at UHR, EBW tunnels to fast X-mode

Conversion Efficiency Very Sensitive to L_n at Upper Hybrid Layer. On CDX-U $C_{max} \sim 1$ for $L_n \sim 0.5$ cm

On CDX-U, Fundamental EBW Converts to X-Mode Between Last Closed Flux surface and Wall

Gas Puffs Used to Determine Radial Localization of EBW Emission

EBW Emission Source is Localized in Radius Allowing Study of Radial Diffusion

ARRIVAL TIME OF PULSE PEAK (ms)

EBW Mode Conversion Efficiency Increases at L-H Transition when Edge Density Profile Steepens

Mode Conversion of Fundamental EBW Emission from Core Occurs in Scrape Off During H-Mode

Measured EBW Conversion Efficiency Agrees Relatively Well with Calculated Efficiency

 B-X-O mode conversion can contribute to measured emission if there is depolarization

Measured EBW Mode Conversion Efficiency on CDX-U & NSTX is 10-20%

Low conversion efficiency consistent with measured L_n

Smaller L_n needed to achieve 100% conversion

In-Vacuum EBW Antenna and Limiter to Optimize L_n for High Mode Conversion

- Local limiters to define L_n in front of antenna
- Probes measure L_n and EBWs directly

Local Limiter Steepens L_n for High Mode Conversion Efficiency

Achieved Order of Magnitude Increase in B-X Conversion to $T_{rad}/T_e \sim 100\%$ with Local Limiter

 Local limiter allows efficient coupling to EBWs for current drive and heating

TEMPERATURE (eV)

Relative Fluctuation Amplitude at 6 GHz and 10 GHz Consistent with Theory

EBW T_{rad} Fluctuations Correlate with Density Fluctuations Near Probe Limiter

EBW Heating and Current Drive Deposition Changed via Poloidal Launch Angle and Frequency

NSTX EBW Current Drive Efficiency ~ 0.1A/W for n_e ~3x10¹⁹m⁻³ and 50% Mode Conversion Efficiency

- EBW emission source radially localized, as expected
- Measured B-X conversion efficiency consistent with theory
- Initial data with limiter show order of magnitude increase in fundamental B-X conversion to T_{rad}/T_e~100%
- Mode-converted EBW emission data supports the viability of EBW heating and current drive
- CDX-U EBW current drive experiments to begin this year

