Review of XP-28 Current driven external kinks J. Manickam, E. Fredrickson,

M.Okabayashi and the NSTX team

Overview of XP-28

- Ramp current to maintain finite edge current density and drive the external kink
- Ramp down B-tor to reduce q_95
- Early beam heating to keep q_min > 1

Signature of ideal kink

- Large perturbation at plasma edge
 - Small or no perturbation in core
 - Low frequency non-axisymmetric mode
- Correlation with q_95
- No island structure on SXR contours
- Mode frequency not locked to plasma
- Parametric dependence

XP-28 shots of interest

105980 - 105992,105996,105997,105999,106011-15 105998,106001,106000,106010 105993,105994,105995,106008,106009 106002,106003,106006,106007 106004,106005

- Other problem with discharge or no clear signature
- Possible ext. kink few oscillations locked ?
- Possible ext. kink many oscillations
- Internal kink + Possible ext kink
- Clear external kink

106001 - Possible ext. kink-few oscill. - locked?

Zero frequency mode amplitude signals

7

105993 - Possible ext. kink many oscillations

106007 - int kink + possible ext kink

106004 - Clear external kink

Zero frequency n=1 mode signal

Theoretical modeling

- EFIT
 - model pressure profile
 - current profile, ff', adjusted to match magnetics
 - shape determined self-consistently
- TRANSP
 - uses EFIT shape and q-profile
 - kinetic pressure
- No MSE data to guide q-profile constraint

Model current profiles based on 106004

External kink mode structure

9/18

Growth-rate shows the classic dependence on q_{edge} for the external kink

n=1 kink mode growth-rate depends on the current pedestal near the edge The toroidal field is scaled to get the same q_{edge}

19

9/18/01

Observations

- We have successfully identified the conditions to observe a current pedestal driven external kink instability in NSTX
- There is a lot of interesting physics in the data set and is the subject of future analysis
- Need improved modeling and diagnostics