

Power Deposition and Transport during HHFW Heating

B.P. LeBlanc for the NSTX HHFW Group. *NSTX Results Review September 19, 2001*

Outline

- HHFW modulation and two-laser Thomson scattering system to measure $\Delta T_e(R)$.
- Preliminary analysis of a high-performance HHFW discharge with indication of ITB.

Measure $\Delta T_e(R)$ with MPTS set to $\Delta t = 3$ ms

Measure $\Delta T_e(R)$ with MPTS set to $\Delta t = 9$ ms

$\Delta T_e(R)$ Measurement Limitations

- Measurement limited by only 10 spatial channels.
 - Observed $\Delta T_e(R)$ at the plasma center.
 - 20 spatial channels for 2002.
- Will try at lower ohmic power.
 - Present measurements were done at $I_p = 0.8 MA$.
 - Will repeat at lower plasma current, e.g. 0.3 MA.
- Experimental observation could be partially caused by transport effects...

A "Typical" Shot: 105830

Power Deposition Profile Computation

A. Rosenberg

J. Menard

Use XR Crystal Spectrometer and MPTS Data to Generate $T_i(R,T)$

Electron Energy Balance Dominated by Conduction

ELECTRON POWER BALANCE (EEBAL) VS x"r/a" bdy (XB)

TRANSP "Sees" a χ_e Drop

- Assume Ti(R,t) =Tio(XR-XSTL)**Te*(*R*) MPTS shape.
- Get HHFW power deposition from HPRT.
- Power balance dominated by conduction.
- Results are preliminary.
- With thanks to M. Bitter, A. Rosenberg, and J. Menard.

Magnetic Diffusion Eqn Solved by TRANSP

- Inverted *q* profile
- $q_{min} = 1$ at $\psi_n = 0.25$ just before MHD event.

Preliminary Transport Analysis during HHFW

- High central $T_e = 3.5$ keV in deuterium plasma.
- Little change in density.
- First-cut TRANSP analysis:
 - Internal transport barrier likely (MPTS data).
 - χ_e drops in core region.
 - Electron energy transport dominated by conduction
 - Inverted q profile.
 - $q_{min} = 1$ just before MHD event.
 - $-q_{min}$ nominally aligned with T_e gradient.

CONCLUSION

– Heating and transport effects appear convoluted.

- HHFW seem to have caused an internal transport barrier in deuterium plasma.
 - χ_e drops in core region.
 - Inverted q profile.
 - $-q_{min}=1$ just before MHD event.

