Dual-mode Reflectometry Measurements of Magnetic Field Strength and Turbulent Correlation Length in NSTX

Mark Gilmore, Shige Kubota,

Xuan Nguyen, and Tony Peebles

University of California Los Angeles

Akira Ejiri

Dept. of Physics, University of Tokyo, Tokyo, Japan

Motivation

- In emerging high beta confinement devices such as *NSTX* (PPPL), Pegasus (Wisconsin) and the *Electric Tokamak* (UCLA,), an accurate knowledge of the magnetic field structure and turbulent correlation length internal to the plasma is of great importance for understanding stability and transport.
- The relatively low magnetic fields in these devices are modified significantly from vacuum levels due to large diamagnetic and paramagnetic effects.
- In "dual-mode" correlation reflectometry O and X-mode radiation is launched into the plasma from the same antenna and signals arising from naturally occurring microturbulence are cross-correlated.
 - Frequency at maximum correlation determines magnetic field strength
 - Width of cross-correlation determines turbulent correlation length.

Magnetic Field Diagnostic Development Program

1. Perform a proof of principle experiment on the <u>LArge_Plasma Device</u> (LAPD) at UCLA. The LAPD is a linear device with simple magnetic geometry and well-known magnetic field and density profile.

2. Develop $|\underline{B}|$ measurement on the Electric Tokamak (*ET*) at UCLA where B can be locally measured using a Hall probe, and where magnetic shear is moderate. Establish accuracy of measurements in a tokamak environment.

3. Fully demonstrate on a mainline, high β device - NSTX

Dual mode correlation reflectometry -

Determination of local magnetic field strength & turbulent correlation length

frequency sweep

• Launch O and X-mode radiation - different frequencies, same antenna.

• After reflection from their separate cutoff layers, fluctuating signals from naturally occurring turbulence are collected and cross-correlated.

• *Peak* of correlation can provide *field strength* & *width* of correlation provides *turbulent correlation length*

LAPD Results

Experiment-Model Comparison: X-mode Frequency of Peak Cross-Correlation

⇒ The code has accurately reproduced the X-mode frequency of peak cross-correlation, $f_{x,pk}$, given measurements of L_n and the turbulent k-spectral width, Δk .

Preliminary O-X Correlation Reflectometry Experiments on NSTX are Encouraging

- A 20-30 GHz correlation reflectometer was modified to operate in a dual mode (O-X) configuration.
- $f_{x-mode} = 30.0 \text{ GHz}$
- f_{o-mode} swept over 20-30 GHz
- EFIT¹ gives $|\underline{B}| \approx 2.4$ kG at this radius, R=1.47 m
- Interpretation of the data using a 1-D model indicates B = 2.5 ± 0.15 kG.
- Assuming reflection occurs at cutoff gives B=2.42kG.

¹ S. Sabbagh, to be published in *Nuclear Fusion*

Preliminary correlation length measurements NSTX

- Preliminary turbulent radial correlation length measurements have been made
 - measurements to-date have been in the 20-30GHz band (n = $0.5 1 \times 10^{19}$ m⁻³) using both O-X and O-O correlation.

• correlation lengths are currently measured over tens of milliseconds - this will be improved during future operation

• 1/e Δr varies from ~0.7cm (edge) to 2.8cm (core). These values are roughly equal to the ion gyro radius.

- It should be noted that UCLA also has capability to determine turbulent correlation lengths in DIII-D, NSTX and ET. Cross-comparison should lead to improved knowledge of the relevant step-size for transport in these devices.
- In addition, comparison with simulation predictions is underway (Leboeuf, Dorland) This should improve overall understanding of transport mechanisms as well as bench-marking of codes.

Preliminary correlation length measurements NSTX - continued

	LAPD	<u>NSTX</u>
f (GHz)	8 - 18	20 - 30
Δr (1/e, cm)	1.5 - 2.5	0.7 - 2.8
$\Delta r/W_{Airy}$	> 0.8	0.7 - 2.8

Reflectometer-probe comparison in LAPD

• Scaled (to W_{Airy}) correlation lengths measured in NSTX are similar to the range measured previously in LAPD.

 $W_{Airy} \approx 0.48 L_n^{1/3} \lambda_0^{2/3}$

- Dual-mode correlation reflectometry measurements have been performed on NSTX over the frequency range 20 to 30 GHz.
- Preliminary analysis indicates correlation lengths of ~1cm near the plasma edge rising towards the core.
- Preliminary magnetic field measurements in the edge plasma are within 5% of values predicted by EFIT.
- These results are extremely encouraging and development of O-X correlation reflectometry for both magnetic field strength and correlation lengths will continue both on ET and NSTX.
- This approach is complementary to MSE. The technique requires no neutral beam and is insensitive to internal electric fields.

