MAGNETIC FITTING OF HELICITY-INJECTED PLASMAS ON NSTX

M.J. Schaffer , L.L. Lao, R. Raman, ¹ S. Sabbagh²

General Atomics, San Diego, CA, U.S.A. ¹ University of Washington, Seattle, WA, U.S.A. ² Columbia University, New York, NY, U.S.A.

> NSTX Results Revie w PPPL 2001 September 19–20

MFIT Was Improved in FY 2001

- The NSTX MFIT fits currents in large-crosssection toroidal rings to magneti c data using singular value decomposition (SVD).
 - Previously showed tendency to spiky current distributions, including large local negative current spikes.
 - Greatly improved since Sept. 200 0, by:
 - Spikines s is pena lized (RMS vs average).
 - User-adjus table SVD condition n umber.
- Can now use more ring elements than befo re with little or no spikiness.
- Added J_{ϕ} contour plot capability.
- MFIT is now well developed and used routinely.

Illustrative MFIT PL ots of Poloidal Flux and Toroidal Cu rrent Density

What Does MFIT Tell Us About Existence of Closed Surfaces in CHI?

- MFIT run with anti current spike parameters yields broad current profiles, hence less closed flux, than EFIT.
 - Cf. MFIT vs. EFIT fits to OH plasma.

Note: MFIT is closer to EFIT when more freedom to peak current is allowed.

NSTX •

What Does MFIT Tell Us About Existence of Closed Surfaces in CHI?

Ip = 390 kA

- MFIT consistently returns modest closed flux regions when CHI-driven current is sufficiently high.
 - Despite the current broadening and closedflux-reducing effects of anti spike parameters.
- This is a very encouraging result, but it is not proof o f closed mean-field surfaces.

What Does EFIT Tell Us About Existence of Closed Surfaces in CHI?

- EFIT has been run with force-free current in a thick SOL.
 - With SOL current out to 2nd (upper) X–point.
- When the closed flux volume is small, EFIT sometimes gets fairly good fits to magnet ic data, but the solution never converges and is far from equilibrium.
- Therefore, we cannot conclude from these EFIT attempts that closed mean-flux configuerations exist yet during CHI in NSTX.

A Concept to Define Curren t-Carrying Flux for Open-Line EFIT is Being Coded

- Use insulated gaps to define minimum and maximum flux values that bound the current-carrying flux.
 - This works for some common topologies and geom etries.
 - It does not work once the closed flux is large.

Conclusions

- MFIT was improved.
 - Much less susceptible to spiky c urrent distributions.
 - Well developed and in routine use.
- MFIT consistently shows mod est closed mean-field flux during highcurrent CHI.
 - There is reason to believe that MFIT is pes simistic about flux closure.
 - Together with observations of n=1 MHD activity, t his gives <u>cautious</u> optimism that CHI plasmas with mean-fie Id closed surfaces are produced in NSTX.
- EFIT has not been able to reliable y confirm flux closure.
- EFIT is presently being modified to fit current in large open-line vol umes.

