HHFW Phased Array Operation

P.M. Ryan, D. W. Swain, J. B. Wilgen, D. A. Rasmussen (*ORNL*) J. R. Wilson, A. Rosenberg, B. P. LeBlanc, J. C. Hosea, J. E. Menard (*PPPL*) R. Pinsker (*GA*)

M. D. Carter, E. F. Jaeger (ORNL)

T.K. Mau (*UC-San Diego*), A. Cardinali (*ENEA-Frascati*) S. Bernabei, C. Phillips (*PPPL*), P. Bonoli (*MIT*) F. Paoletti, S. Sabbagh (*Columbia*)

And the NSTX Team

NSTX Results Review PPPL September 18, 2001

XP-15: HHFW CD/Phasing studies

- He, 0.45 T, single-null divertor, low current (~370 kA), antenna-plasma gap ~ 5 cm.
- July 13 (105860-884, 105892-93)
 - **200 ms, 2.7-3.2 MW rf pulses.**
 - Phasing for fast phase velocity ($k_z \sim 8 \text{ m}^{-1}$) heating, co-, and counter-CD.
 - Two lower-power (1-1.9 MW), long pulse (400 ms) co-CD shots
- July 25 planned experiments encountered power outages.
- July 30 attempted a few shots (unsuccessful)

Array numbering, phase and coordinate conventions

Note: RANT/GLOSI uses $exp(-i(\omega t - (\theta_{i+1} - \theta_i)) \sim exp(-i(\omega t - k_z z)))$ phase convention, opposite of NTOONS.

Symmetric Heating $(00\pi\pi00)$ shot 105868 Currently using this shot to analyze ALL phasings

Array phasing for CD shots

ornl

HHFW Phased Operation

• Phasings of $00\pi\pi00$, $+\pi/2$, and $-\pi/2$ have the same spectral peaks and hence similar loading.

• Maintaining a match while switching between these three phasings was not a problem.

• Maintaining constant plasma conditions for long pulses was more difficult.

Transmitter load changes somewhat with phase, but adequate match could be maintained for full pulse at 2.7 MW.

Note that spectral peaks occur at same k_z for all phasings.

Did we see any current drive?

Observe no reponse in the loop voltage when the wave spectrum directional is changed

Results of simple 1-D CD and power balance calculation to compute behavior of profiles, loop volts, temperature with time

- Lots of simplifying assumptions:
 - $Z_{eff} = 2.4$
 - Fixed density, with profile $\alpha_n = 0.5$
 - Fixed temperature *profile* $\alpha_{T} = 3$
 - Temperature *value* determined by power balance
 - ITER 89P scaling, H = 2. For 3 MW input, gives $\tau_{E}\approx 27$ ms, $T_{0}\approx 1.9$ keV
 - Lots of large aspect ratio approximations
 - Ehst CD approximate formulas, gives $I_{HHFW} \approx 200 \text{ kA}$

•For $I_p = 400$ kA, steady-state solutions for co-CD, counter-CD, and symmetric phasing are:

•	Со	Ctr	Symm.
• $\mathbf{I}_{cd} =$	200 kA	-200 kA	0 kA
• $I_{bs} =$	160 kA	180 kA	170 kA
• I _{oh} =	40 kA	420 kA	240 kA
•V _{loop} =	0 V	0.7 V	0.2 V

Response of system with time

- Application of HHFW power increases temperature in ≈ 60 ms
- Loop volts drop quickly due to decreased plasma resistance
- Loop voltage changes significantly in ≈ 200 ms as current profile equilibrates

Analysis/Modeling of CD operations

- Analysis has begun using the edge density profiles of shot 105868 (symmetric heating)
 - this was the first shot for which thorough reflectometer analysis was available.
 - Subsequent analyses of CD shots indicates that these density profiles are generally applicable to co- and counter-CD phasings as well.
- 1-D warm plasma slab code (GLOSI) has calculated plasma impedance matrix boundary conditions for two times in the pulse.
- RANT3D has calculated the associated power spectra for these BC's for three array phasings.
- Ray tracing optics analysis has begun (T. K. Mau).
- We will disseminate these parameters to the rest of the modeling community for their consideration.

Edge density profiles chosen for CD calculations

PMR-NSTX Results Review 9/18/01

Electron Temperature and B-field profiles for CD calculations

Radius (m)

PMR-NSTX Results Review 9/18/01

R (m)

Power spectrum calculated by GLOSI/RANT3D

Plasma response is asymmetrical, driving co-directional current preferentially

PMR-NSTX Results Review 9/18/01

Previous current drive calculations assumed edge density profiles that were lower, with longer SOL.

PMR-NSTX Results Review 9/18/01

Conclusions and Future Work

- Initial phased array operation for CD has been performed for relatively short pulses at relatively high power levels.
 - No operational problems were encountered.
 - Load match at the transmitters was maintained as the array phase was switched.
 - Macroscopic indications of current drive have not been observed.
 - Initial calculations indicate that rf pulses longer than 200 ms may be needed for CD to affect the loop voltage.

• WORK TO BE DONE FOR APS MEETING:

- Ray tracing calculations for current drive.
- Full-wave calculations for power deposition.
- Time-dependent CD calculations.

• FUTURE EXPERIMENTS:

- Motional Stark effect measurements will help diagnosis.
- Phase feedback control will be implemented.
- May adjust decoupler settings for better isolation in the presence of plasmas (Swain's presentation).

(1) NSTX =