NSTX MHD Experimental Task Group

CY 2001 Results Overview

S. A. Sabbagh for the NSTX MHD ET Group

NSTX CY2001 Results Review - 9/19/01

Princeton Plasma Physics Laboratory

CY 2001 run has resulted in an MHD ST database with both depth and breadth

- CY 2001 experiments have addressed all major instabilities
 - More than 2000 plasma shots run (total)
 - Most XPs have publication quality data
 - Even distribution of XP topics and leaders
 - Diagnostic coverage not fully mature, but should be adequate
- CY 2001 meetings provide an opportunity to establish NSTX as an ST plasma stability research facility
 - APS DPP Meeting: Oct 29th Nov 2nd
 - Mode Stabilization Workshop: Nov 5th – Nov 7th

Several key instabilities have been observed and are being studied

Instability

- Ideal low-n kink/ballooning
- Neoclassical tearing modes
- Current-driven kinks
- Sawteeth
- Resistive wall modes
- Compressional Alfven eigenmodes
- Reconnection events

Beta limiting? yes yes at reduced q for large r(q = 1)under investigation under investigation can be delayed

Status of NSTX MHD Task Group XPs

Experimental Proposal	(run days completed) Lead	er
XP17 Influence of J profile on MHD stab	ility at low A (C) S. Sabbagh	
XP22 Survey of modes in Alfven/ICE free	quency range (C) E. Fredrickson	
XP16 Investigation of Troyon Scaling in	NSTX (3) J. Menard	
XP23 NBI Heating with small q=1 radius	in NSTX (2) M. Bell	
XP24 Observation of NTMs in NSTX	(3.5) D. Gates	
XP28 Study of current driven kink modes	s in NSTX (1) J. Manickam	
XP32 Compressional Alfven eigenmodes	s (2) E. Fredrickson	
XP38 Dependence of beta limit on triang	gularity (1) D. Gates	
XP20 Characterization of resistive wall n	nodes at low A (FR) S. Sabbagh	

(FR): Pending formal review (##): In progress (C): Completed

NSTX CY2001 Results Review – MHD Session

- Beta limits / resistive wall modes
- Tearing mode research
- Access to wall stabilized high beta
- Locked modes and error fields
- Current driven kink research
- CAE mode studies
- Development of small sawtooth scenarios
 B

Sabbagh
Gates
Paoletti
Menard
Manickam
Fredrickson
Bell

NSTX Beta Limit and Initial Wall Stabilization Experiments

S. A. Sabbagh, R. Bell, M. Bell, J. Bialek, E. Fredrickson, A. Glasser, B. LeBlanc, J. Menard, F. Paoletti, and the NSTX Team

NSTX CY2001 Results Review – 9/19/01

Princeton Plasma Physics Laboratory

NSTX beta limits have been established and research on wall stabilization has begun

XP17 Goals

Determine beta limit dependence on profiles at low A

Examine plasma / wall coupling for future mode stabilization

• Outline

- Current and pressure profile dependence of beta limit
- Equilibrium reconstruction refinement
- Ideal stability limit calculation / comparison to experiment

S. A. Sabbagh

Effect of wall coupling - resistive wall modes

$\frac{Maximum \ \beta_{N} \ increases, \ then \ saturates \ with}{increased \ current \ profile \ peaking}$

fast beta collapses observed at all values of I_i

beta saturation coincident with tearing activity at higher β_N , $\beta_p \sim 0.45$ **NSTX** S. A. Sabbagh

$\frac{Maximum \ \beta_N}{profile \ peaking}$

Database of "magnetics-only" equilibrium reconstructions

Stability analysis of "kinetic" equilibrium reconstructions just underway

Recently refined equilibrium reconstruction allows more faithful stability analysis

- Pressure profile fit guided by electron pressure shape
 - 5 free parameters to describe p profile, as opposed to 1 in magnetics-only fit
 - Yields time evolving pressure peaking factor
- Pressure magnitude (stored energy) determined by fit to diamagnetic loop
- q(0) "calibrated" to match sawtooth characteristics
 - Analogous to procedure used for magnetics-only fits
- First results available in NSTX database
- full database run pending availability of diamagnetic loop signals for all shots

Computed stability in good agreement with experiment

- Increased pressure peaking results in decreased β_N
- Beta collapse after n = 1internal mode unstable
- Both plasmas unstable to current driven kink during the rise in β_N

XP17 run to search for Resistive Wall Mode in ST

Goals

- Operate at or above the ideal no-wall beta limit
- Measure plasma rotation evolution leading up to the instability
- Determine variation of mode stability as a function of outer gap
- Determine critical rotation frequency for onset of RWM

Techniques

- Operate in regime where RWM is expected ($I_i \sim 0.6$, $\beta_N > 3$)
- Operate in a regime clear of sawtooth and low n islands
- Once resistive wall mode is established, vary outer gap
- Utilize several diagnostics and MHD analysis
 - no single diagnostic can identify the mode as a RWM

Plasma / wall gap scan yields evidence for RWM

	Resistive Wall Mode Characteristic	Observed in XP
•	Observed when ideal MHD unstable (no wall)	YES
•	Mode observed in locked mode signal	YES
•	Mode growth rate ~ 1 / τ_{wall}	~ YES
•	Less stable as outer gap decreases	YES
•	Slowed rotation leading to fast beta collapse	YES
•	Mode growth during plasma rotation	YES
•	Critical rotation frequency for mode growth	~ YES
•	No clear island-like precursor in Mirnov signal	YES
•	USXR shows kink-like perturbation	YES

In DIII-D: Nearly stationary RWM grows in presence of plasma rotation, unlike locked tearing mode

Locked mode observed before fast β collapse when

toroidal rotation slows

Early fast beta collapses occur in plasmas with reduced toroidal rotation

- "Critical" rotation frequency < 2 kHz at the plasma core
- Rotation decrease occurs across the entire plasma (preliminary CHERS analysis)
- CHERS rotation profile analysis is needed

USXR data shows a mode structure resembling a global kink in RWM candidate shots

Plasmas with strong islands lead to beta saturation

- Slow beta reduction occurs over several 10's of milliseconds
- Core plasma rotation (CHERS) continues to increase until discharge termination
- In similar plasmas, slow reduction in frequency of n = 2, 1 indicates slowing of island rotation

No Mirnov precursors in candidate RWM shots

- Small, fast "bursts of MHD observed when plasma boundary / conducting wall gap drops to ~ < 3 cm
- Electron pressure peaking larger than in plasmas with islands
 - Local pressure gradient could be drive mechanism

<u>Achieved β_N decreases with decreasing outer gap</u>

- Consistent with theory, RWM stability is decreased as plasma-wall gap is decreased
- In contrast, ideal mode becomes less stable as gap increases

<u>Hypothesis for low aspect ratio RWM evolution</u> <u>differs from usual tokamak picture</u>

- Wall mode causing slowing of toroidal rotation occurs during period ideal *current* driven kink instability
- Pressure driven mode causing fast beta collapse is only weakly coupled to the conducting plates at $\beta_N \sim 3$
 - Greater coupling, and therefore enhanced wall stabilization theoretically occurs at *higher* β_N
- Fast collapse observed when toroidal rotation becomes sufficiently small – but is this coincidence?
 - RWM and pressure driven internal mode could be decoupled
 - Data exists to test this, however need CHERS analysis for more shots to reach a conclusion
- Feedback stabilization system design hinges on this hypothesis
 - □ If true, feedback stabilization in an ST will require higher β_N and more precise profile control than in a tokamak at higher A and lower q_a

Profile dependence of beta limits and wall stabilization at low A is under active research

- Normalized beta limit experimentally:
 - Increases, then saturates with increasing current profile peaking
 - decreases with increasing pressure profile peaking
- Comparison to theory with refined ("kinetic") equilibrium reconstruction is underway
 - Analysis of "magnetics-only" equilbria support experimental trends
- Experimental evidence for resistive wall modes
- Theory predicts weak coupling to present conducting structure at levels of β_N reached in experiment

Extra slides follow

<u>Control experiment shows typical n = 1 activity</u>

- Strong n = 1 mode activity preceeds fast collapse of plasma
- This is typical of a large inversion radius sawtooth crash documented on NSTX
- This activity defines the nominal end of the experiment – typically t > 0.25 s maximum

<u>Timescale of rapid rotation slowdown apparent in</u> <u>higher frequency modes</u>

- Fast collapse in plasmas close to wall occur on the wall time (~ 3 ms USXR) (~ 10 ms locked mode detector)
 - Collapses in plasmas not coupled to the wall occur in a few hundred µs
- Bursts at higher β_N appear to be beating of higher frequency modes

