

Particle balance assessment in NSTX: strategy and tools.

V. A. Soukhanovskii & NSTX research team Princeton Plasma Physics Laboratory

2001 NSTX Results Review 19 - 20 September 2001 Princeton, NJ

ODNSTX-

The National Spherical Torus Experiment

Vlad Soukhanovskii, NSTX Results Review, 20 September 2001, Princeton, NJ

Strategy for particle balance assessment

Plasma	Confinement and	Boundary
operations	Transport	physics
	Particle balance	

- Understand particle sources, sinks, total inventory
- Determine efficiencies of fuel and exhaust sources
- Determine density limits and scaling laws
- Determine particle confinement and scaling laws

Particle sources, sinks and diagnostics

- Plasma configurations: inner wall limited (IWL), diverted (LSN, DND)
- Fuel gases: D2, He
 Puffed mostly from midplane Bay F
 valve at R < 150 torr I /s
 - Other gasses (He, Ne, Ar) puffed from Bay B, Bay I valves
 - Vessel volume: 28.7 m³, plasma volume 10 - 11 m³
- Heating: OH (1 MW),
 HHFW (6 MW), NBI (5 MW)
- Wall conditioning: He GDC, TMB and plasma boronization
- Extensive profile diagnostics (MPTS, FiReTiP, UCLA MMWR, NPA, spectroscopy)

Spectrally filtered 1-D 4.8 kHz CCD arrays (ORNL - PPPL)

- Data obtained with C III and D_a filters (2001)
- In-vessel spatial calibration done (08/2001)
- Photometric calibration being done (09/2001)

Vlad Soukhanovskii, NSTX Results Review, 20 September 2001, Princeton, NJ

\mathbf{D}_{α} brightness profiles of divertor and center stack

Applications:

- High res. D_{α} and C III brightness profiles
- Edge events (ELMs, high n/m modes, IREs)
- Plasma configuration (diverted, partially diverted, limited plasmas)

Vlad Soukhanovskii, NSTX Results Review, 20 September 2001, Princeton, NJ

Gas puffing is not very efficient

Ohmic IWL and LSN 0.8 MA fiducial shots

$$\overline{n_e} \lesssim (0.1 - 0.9) \times n_{Gr}$$

NBI provides efficient core fueling

NBI fueling rate R < 10 Torr I / s

Modeling

Numerical modeling (R. Maingi, C. Bush (ORNL), M. Rensink (LLNL), D. Stotler, S. Kaye, V. Soukhanovskii (PPPL))

- Input: Measured heat flux profiles, D_{α} , C III profiles, plasma profiles
- DEGAS2: Monte-Carlo 2D neutral code neutral sources and transport
- UEDGE: 2D multifluid code transport, recycling, fueling efficiency
- TRANSP: particle balance, fueling efficiency, confinement

Analytical modeling

- Input: plasma profiles, Zeff, fueling rates, exhaust rates
- Determine recycling from global particle balance of all sources and sinks, plasma neutrality and Zeff.
- Determine fueling efficiency, confinement time

Future plans

New experiments

- Gas puffing XP (He, Ne, Ar, ..?) - study rad. limits, fueling,

transport

- Particle balance in D2 and He plasmas - study fueling laws, particle confinement scaling laws

New fueling techniques

- Consider center stack gas puff fueling (very efficient at MAST)
- Thermal molecular beam fueling (idea to be presented at 2002 NSTX Research Forum)

• Diagnostic improvements

- Two additional spectrally filtered cameras (ORNL)
- IR cameras
- Fast scanning probe (UCSD)
- Additional HAIFA channels

