BOUT simulations of NSTX Boundary Turbulence and Transport

X.Q. Xu,

W. M. NEVINS, M. E. RENSINK Lawrence Livermore National Laboratory

> J. R. Myra Lodestar Research Corporation

S. Zweben Princeton Plasma Physics Laboratory

R. Maqueda Los Alamos National Laboratory

Presented at NSTX Results Review September 19 - 20, 2001, Princeton, NJ

Acknowledgment to Drs. R. H. Cohen, S. Kaye, R. Kleiber, S. Krasheninnikov, M. Porkolab, G. D. Porter, T. D. Rognlien, D. .D. Ryutov and P. B. Snyder.

- Frequency spectrum of BOUT simulation resembles that of GPI measurements.
- Poloidal fluctuation phase velocity v_p from the resistive X-point turbulence shows experimentally observed structure across separatrix.
- Strong poloidal asymmetry of particle flux in the proximity of the separatrix.

Boundary Plasma Turbulence Modeling is Important

- Turbulence transport in the plasma boundary has a different character than in the core
- Although the present major tokamaks and STs are diverted, few of the turbulence simulations include this geometry
- Edge Pedestal Physics
 - → Observed large velocity shear layer
 - → Proximity of open+closed flux surface
 - → Presence of X-point
- Need to understand dominant modes in X-point geometry

- the reduced Braginskii equations:
 - -Vorticity,

 $\varpi = nq \nabla_{\perp}^{2} \phi + nq \nabla_{\perp} \phi \cdot \nabla_{\perp} \ln n + \nabla_{\perp}^{2} P_{i}$

- -Continuity, N_i
- –Parallel Ion Momentum, $V_{\parallel i}$
- Parallel Electron Momentum, $V_{\parallel e}$
- -Ion Temperature, T_i
- -Electron Temperature, T_e
- -Magnetic potential, A_{\parallel}
- sheath boundary conditions in SOL
- BOUT documentation and publications

http://www.mfescience.org/users/xu

Local Safety Factor, $v(\psi,\theta)$, has strong variations near X-points that affect mode

BOUT shows Linear Instabilities for NSTX, but not for Circle Tokamak for Curvature Drives being Zero

- Refection due to strong X-pt shear
 partial standing wave (destabilizing) between X-pts
- Transimission through X-pt, such as no X-pt,
 outgoing waves (stabilizing) between X-pts

ll

- Simulations start from plasma profiles in a typical Ohmic plasma for NSTX geometry given by EFIT
- Radial midplane plasma profiles take as (tanh) fits given by Uedge
- The midplane values on the separatrix are: $T_e = 30 \text{eV}$, $T_i = 30 \text{eV}$, and $N_i = 2.3 \times 10^{12}/\text{m}^3$.
- BOUT shows Characteristics of Turbulence
 - Comparison with GAS-Puff-Image (GPI) expt.
 - * comparisons with GPI should be interpreted as qualitative beause of the availability of plasma profile measurements.

Fluctuating density and particle flux show strong poloidal variation

Fluctuating density shows sheared poloidal flow and radial streamer structures across the separatrix

Substantial Wave Propagation in electron diamagnetic direction

Poloidal fluctuation phase velocity reversal has been observed in tokamaks, and stellarators

BOUT shows that the correlation time is shortest inside the velocity shear layer

Filament-like structures observed in BOUT and GPI

BOUT shows simular frequency spectrum as Gas Puff Image

GPI yields k_θβ ~0.2

Electric Field and density fluctuation across separatrix show similar radial structure as Tokamaks

BOUT shows higher density fluctuation for high collisional plasma at outside midplane

Higher fluctuation level and longer eddy size in SN is consistent with higher q95

Single-null Generates Higher Fluctuating Density and Different Radial Mode Structure <N(ψ,θ,φ,t)>rms

in SN

- BOUT contains much of the relevant physics for the pedestal barrier problem
- Encouraging results have been obtained when using NSTX configurations
 - Fluctuation level and transport are higher in SN than in DN, maybe due to higher q_{95} in SN.
 - Frequency spectrum of BOUT simulation resembles that of GPI measurements .
 - Poloidal fluctuation phase velocity v_p from the resistive X-point turbulence shows experimentally observed structure across separatrix.
 - radial electric field shows measured flow shear structure across separatrix
 - show strong poloidal asymmetry of particle flux