

Heat Flux and Radiated Power in the NSTX Divertor

S.F Paul, R. Maingi and the Boundary Physics ET NSTX Results Review FY2002 Princeton Plasma Physics Laboratory Princeton, NJ

September 9-11, 2002

Divertor and plasma boundary research in NSTX

- The major goals of the Divertor and Boundary Physics studies are the control of impurities, efficient heat removal and understanding a role of the edge plasma that plays in the global energy confinement of the plasma.
- Implementation of diagnostics and plasma modeling are needed to understand both detached and attached divertors and their effect on the core and SOL plasmas.
- Diagnostics installed for determining divertor power balance:
 - 4-channel divertor bolometer array to measure radiation for emission profiles
 - Infrared camera to measure the surface temperature from which the heat flux is derived

IR camera view allows radial profile measurements

IR camera: 7-13 μ m range, 30 Hz, 25 ms thermal e-folding time, spatial resolution ~ 1 cm with present optics

Passive Stabilizer Plates

Carbon Tiles

Divertor bolometer view resolves vertically

V\$7X ——

Bolometer has gold foil face, reflects above .5 μ m

Tile blackbody radiation > 1 μ m

Divertor bolometer sensor

Heat flux profile in 1 src. NBI shot comes into equilibrium

September 10, 2002

Outer strike plate: Higher heat flux -> higher wall temp. narrow width of strikepoint independent of P_{NBI}

September 10, 2002

S. Paul--NSTX Results Review

8

Inner strike plate: Higher heat flux -> higher wall temp. wide width of strikepoint independent of P_{NBI}

S. Paul--NSTX Results Review

In/out ratio: footprint and power not dependent on P_{NBI}

September 10, 2002

S. Paul--NSTX Results Review

Profile comparison at 3.7x10¹³ cm⁻³ higher flux, same foot print diated nowar flux is increases from #2 to 6# W/c

Radiated power flux is increases from 43 to 64 W/cm²

L-mode/H-mode comparison --1 NBI source

HIGHER heat flux on outer plate in <u>L-mode</u>

No change in heat flux on inner plate in L-mode

September 10, 2002

HIGHER heat flux on outer plate in L-mode

September 10, 2002

S. Paul--NSTX Results Review

Higher divertor heat flux in L-mode Radiated power flux increases from 30 to 42 W/cm² in L-mode

R. Maingi

At same power level, divertor radiation is slightly higher in L-mode At low power, vertical radiation profile concentrated towards strike plates. Rough estimate of divertor radiated power up to 1 MW