Neutral Transport Simulations of Gas Puff Imaging Experiments

D. P. Stotler, B. LaBombard¹, B. LeBlanc, R. J. Maqueda², J. L. Terry¹, and S. J. Zweben *PPPL*, ¹*MIT*, ²*LANL*

> NSTX Results & Theory Review September 11, 2002

Examine Relationship Between Observed Emission Patterns & Underlying Plasma Turbulence

DEGAS 2 Simulations

Start simple:

- 2-D, steady-state neutral transport,
 - Plasma data input to code,
 - Compute neutral density & line emission,
 - Get emission in poloidal plane ~ camera view.
 - 3-D & time-dependence later.
- Use time-averaged $n_e(R) \& T_e(R)$,
 - Compare with observed avg. cloud size & location.
- Or, add ad-hoc 2-D perturbation,
 - Compare spatial structure of emission with perturbation.

• Consider D_2 (D_{α}) and He (5877 Å) puffs.

Realistic, High Resolution Geometry NSTX Shot 108321, 187 ms

For D_2 Puff, D_{α} 's From D_2 , D_2^+ Dissociation Important

- Simulations of C-Mod GPI experiments.
- Most emission from excitation of D atoms,
 - E.g., e + D(1s) \rightarrow e + D*(n=3) \rightarrow D*(n=2) + D_{α}
- Some comes from dissociation,
 - E.g., $e + D_2$ $\rightarrow e + D(1s) + D^*(n=3)$
 - Surprise was how much.

Spatial Structure of Plasma Variation Apparent in Simulated Emission

Relationship Between Emission & Plasma Determined Mostly By Emission Rate

Effective Scaling of *S* Across C-Mod Profile

Scaling of Emission Rate for He 5877 Å Also Varies Across Profile

NSTX Shot 105710

Impact of Turbulence on Neutral Density Can Cause Smearing or Shadowing

- See effect by comparing perturbed S with that computed with unperturbed n_j,
 - \Rightarrow Smearing.
- Quantified for C-Mod:
 - Not a problem for D,
 - But significant for D₂ and D₂⁺.
- Will be examining quantitative effect on k spectrum.

Width of Emission in NSTX Simulations Determined by Profiles

