Gas Puff Imaging of edge turbulence

R. J. Maqueda

Los Alamos National Laboratory D. P. Stotler and S. J. Zweben Princeton Plasma Physics Laboratory

A. M. Keesee West Virginia University J. L. Lowrance, V. J. Mastrocola, and G. F. Renda Princeton Scientific Instruments

Turbulent structure aligned with magnetic field $(k_{//} \ll k_{\perp})$

Auto-correlation times \leq **100** μ **s**

NSTX Results Review 2002 Sept. 10, 2002

1

Objective

- Understand the physics of edge turbulence in plasmas. This understanding will only come from interaction with theory and simulation codes.
- Characterize the 2-D structure vs. time of the edge turbulence.
- Compare experimental results with theory and modeling. For example: BOUT (Boundary Plasma Turbulence) code of LLNL.

Control of edge turbulence ... and its effect on core confinement.

Outline

- Gas Puff Imaging diagnostic in NSTX
- Results
 - snapshots
 - movies & blob tracking
- Conclusions
- Analysis and experiment plans

Gas Puff Imaging diagnostic

• Optical system views neutral line emission from He or D_2 gas puff:

HeI (587.6 nm) D_α (656.2 nm)

- Emission: S(photons/s cm³) = $n_o f(n_e, T_e) A$ where A is the radiative decay rate (>> 10⁷ sec⁻¹) ($f(n_e, T_e)$ presented by Daren Stotler)
- Space and time variation of neutral light emission measured with **fast-gated cameras** and **photodetectors** on discrete fast chords.
- Gas puff changes plasma density but: DOES NOT perturb edge turbulence significantly DOES NOT introduce fluctuations through n_o
- View of gas puff along magnetic field line.

GPI Diagnostic setup in NSTX

- Use re-entrant port and linear gas manifold.
- Use **He**, D_2 , or Ar puffs.
- Use beam-splitter and PMTs (100 kHz bandwidth) for discrete fast chords.

Imaging cameras

	Kodak EM1012	Phantom v.4	PSI-4*
Intensified	yes	yes (ILS-3)	no
Array size (pixels)	239x192	512x512	160x80
Frame speed (frames/s)	1,000	1,000	≤1,000,000
Max. speed "	6,000	32,000	
Frame storage	1,638	4,000	28

* Princeton Scientific Instruments

Snapshots of edge turbulence

HeI filter (587.6 nm) 10 µs exposure 0.9 MA - 0.35 T

Phantom v.4 ILS-3 intensifier

L-mode

H-mode

108316

Poloidal k spectra in NSTX

• GPI emission normalized to same total time averaged emission from edge.

• Smaller fluctuation amplitudes observed in H-mode than L-mode.

Videos of edge turbulence in NSTX

- PSI-4 camera (28 frames) at 100,000 frames/s and 10 μs exposures.
- http://w3.pppl.gov/~szweben/psi/
- H-mode Shot 108316 Shot 108315

Shot 108466

Videos of edge turbulence (cont.)

• L-mode

Shot 108609

- Clear differences seen between L-mode and H-mode.
- Edge turbulence structure, a combination of "blobs" and "waves", followed in time.
- Complex blob movements observed.

Blob tracking

Algorithm developed by A. Keesee (WVU)

Blob velocity

Algorithm to track wave-like structures needs to be developed

Blob velocity summary

Plasma Condition	<vr> (cm/s)</vr>	< Vr > (cm/s)	<vp> (cm/s)</vp>	< Vp > (cm/s)
Ohmic; low density	2.6 +/- 7.1 E4	5.6 +/- 5.1 E4	-0.3 +/- 1.5 E5	1.1 +/- 1.1 E5
Ohmic; med density	2.4 +/- 7.6 E4	6.0 +/- 5.2 E4	-0.5 +/- 1.3 E5	1.1 +/- 0.9 E5
Ohmic; high density	2.3 +/- 7.0 E4	5.4 +/- 5.0 E4	-0.3 +/- 1.1 E5	9.0 +/- 7.9 E4
H-mode	0.2 +/- 1.0 E5	6.8 +/- 8.0 E4	-0.5 +/- 1.9 E5	1.1 +/- 1.6 E5
L-mode	0.5 +/- 6.8 E4	4.9 +/- 4.7 E4	-0.7 +/- 1.9 E5	1.5 +/- 1.3 E5

Velocity spread (standard deviation) is large respect to means.

On average there is:

- an outward radial flow
- a "negative" poloidal flow, in the direction of the ion diamagnetic drift.

Summary of results

	NSTX	Alcator C-Mod
frequency spectrum	broad	broad
fluctuation level	10%-100%	15%-135%
autocorrelation times	10-100 µs	10-20 µs
poloidal correlation length	6-9 cm	~0.8 cm
radial correlation length	<4-6 cm	~1 cm
blob velocity	0.5-1 m/ms	~0.5 m/ms
poloidal k spectrum	broad	broad
H vs. L differences	yes	not seen*

Edge turbulence study is a combined multi-machine effort!

Conclusions

- GPI measurements on NSTX consistent with previous Langmuir probe, reflectometer and BES measurements in other experiments.
- Complex movement of 2-D edge structure can be followed with newly developed ultra-fast cameras.
- Notable differences (turbulence/blob reduction) observed in NSTX between H-mode and L-mode.
- No trends (nor "visible" differences) observed in density scan.
- Characterization of edge turbulence is progressing... specially with the commissioning of other complimentary diagnostics such as Langmuir probes (UCSD) and reflectometry (UCLA and ORNL).
- Initial comparison with BOUT 3-D edge turbulence code certainly encouraging.

Plans

EXPERIMENTAL

- Continue statistical analysis (wave number spectra, time spectra, blob and wave analysis, etc.).
- Compare GPI fluctuations with Langmuir probe and reflectometry.
- Measure poloidal distribution of turbulence (inner midplane, Xpoint region, etc.).

ANALYSIS

- Obtain BOUT runs matching experimental conditions (Xu and Nevins, LLNL).
- Calculate expected GPI patterns from turbulence simulations using DEGAS 2 and compare with measured patterns.
- Search for coherent structures and characterize it (e.g., blob statistics and motions).
- Calculate spatial shadowing and possible time-dependent effects using DEGAS 2.

