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CHI Raises Basic Physics Questions

● Is there a sizeable central region of CLOSED magnetic surfaces by the
end of a CHI non inductive startup pulse?

● Needed to confine energetic HHFW electrons and/or NB injected ions during
the handoff from CHI startup to another non inductive current driver.

● Helicity transport theory predicts that magnetic surfaces must be open
(either intermittently or steadily) to sustain current.

● Open surfaces reduce hot plasma confinement.

● How does CHI operate in STs to distribute plasma current on the closed
surfaces?

● Is this scalable to larger devices and stronger B?
● Is this compatible with good confinement, or will CHI be limited to just a

startup role?
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EFIT Was Used to Analyze a High-Current CHI Shot
for Indications of Flux Closure

● A force�free current (yellow)
was fit in the scrape�off layer
(SOL).

● User specifies outer limit of SOL
current; not automatic.

● Here shown as near the 2nd
X�point.

● EFIT requires at least a small
closed flux region.

● Convergence is poor for NSTX
CHI shots tried so far.

● Of course, EFIT assumes
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EFIT run with SOL Current Finds a Small Closed-Flux
Region. It Has a Hollow Jtor Distribution.

   Flux Surfaces                     Current Contours
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● EFIT finds a small closed-flux
region, even though a hollow
current profile makes less flux
than a peaked one.

● Hollow J is qualitatively
consistent with theoretical
helicity transport concepts.

● EFIT cannot fit low-current
CHI shots (no closed
surfaces).

Hollow
Jtor

● SOL current out to 2nd X�pt.
● Fit indicators are quite poor in both E-and MFIT.
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EFIT Can be Coded to Fit Current
on the Correct Open Magnetic Lines

● Use the insulated gaps to define the minimum and maximum flux values
that bound current-carrying flux (yellow).

● This works for some common topologies and geometries.
● It will not work once the closed flux is large.

Shot 105514 at 214 ms
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Conclusion from Limited EFITting of CHI on NSTX

EFIT Magnetic Reconstruction
of a High-Current NSTX CHI Shot

is Consistent with Small Closed Flux Region
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SOME CONSIDERATIONS ON
MAGNETIC HELICITY
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Magnetic Helicity and Its Transport
Are Guiding Concepts for CHI

Berger-Field  RELATIVE HELICITY is the difference between two simple A·B
products over all space, V∞,

Vα = V

Vβ = V∞ – V

Bref

Bref

Flux in Vβ 

Reference B–Field

Vα = V

n

S
B

B

Flux in Vβ 

Physical B–Field

BB

    K d x d xrel ref ref== ⋅⋅ −− ⋅⋅
∞∞ ∞∞∫∫ ∫∫A B A B3 3

V V

Outside of the volume
V of interest, Bref = B.

Berger & Field,  J. Fluid Mech.
147 (1984) 133.
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Is the Moses-Gerwin-Schoenberg Helicity
the Same as More Familiar Relative Helicities?

● Berger-Field relative helicity is gauge independent in an arbitrary V and
independent of external fields and linkages, even if S is not a magnetic
surface, under the generalized condition

This includes the familiar
Best choice of a reference field can depend on the physical problem.

● In contrast, Moses et al. define a magnetic helicity in volume V as simply

This sets  ∇ ·A = 0  and  A·n = 0  on S, which yields unique gauge and helicity.

They use no reference fields. Moses, Gerwin, Schoenberg, Phys. Plasmas 8 (2001) 4839.

  
K A B d x A nMoses

V
== ⋅⋅ == ××∇∇∫∫ 3   with    on SΨΨ .

  A n A nref ×× == ××   on  S.

  n B n Bref⋅⋅ == ⋅⋅   on  S.
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Time Derivative of Relative Helicity in General Requires
Fields and Boundary Conditions on Moving Surface

Let U(x,t) be velocity of a coordinate point on S(x,t) and moving with it.

U(x,t) is measured in a fixed, non-deforming coordinate system.

U is perpendicular to S(x,t).

Let ( ´ ) denote quantities measured at rest on the moving S.
Then:

  ′′ ==B B   ′′ ==A A   ′′ == ++ ××E E U B   ′′ == −− ⋅⋅φφ φφ U A

  
∂∂
∂∂

∂∂
∂∂

∂∂
∂∂

′′ == −− ×× ++ ∇∇ ⋅⋅(( )) == ++ ⋅⋅∇∇ ==A A U B U A A U A A
t t t

d
dt

  
E A E A== −− −−∇∇ ′′ == −− ′′ −− ∇∇ ′′∂∂

∂∂ φφ ∂∂
∂∂ φφ

t t
,           

Boundary
conditions:   

∂∂
∂∂

∂∂
∂∂

′′
×× == ′′ ××A

n A nref
t t   ′′ == ′′φφ φφref   ′′ ×× == ′′ ××E n E nref

U
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Time Derivative of Relative Helicity
Can Take Various Forms

● Much of  the confusion over application of magnetic helicity arises from
how to interpret the various terms.
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Moses et al:
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Moses-Gerwin-Schoenberg Helicity is a
Special Case of Berger-Field Relative Helicity

● The Moses et al. choice of A·n = 0 is consistent with Berger-Field, whose
relative helicity does not constrain the choice of ∇ ·A or A·n.

● When A·n = 0,  then U·A = 0, too, since U || n.
Then, it can then be shown that the Berger-Field boundary conditions

can be written identically in terms of either moving-frame or fixed-frame
variables.

● It appears to me at this time that Moses et al helicity is a special case of
Berger-Field relative helicity, except for no reference helicity.

● Moses et al is simpler than Berger-Field, but does Moses et al ever need to
subtract reference fields?.

● I want  to derive Moses et al. explicitly for toroidal volumes and with close
attention to conditions at moving surfaces.
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