

Status of and Progress on T_i and V_o Analysis Issues

R. E. Bell

Princeton Plasma Physics Laboratory

NSTX Results Review September 9, 2002

NSTX iCHERS Diagnostic

NSTX Interim CHERS:

- 16 spatial channels, Bay B, viewing Neutral Beam
- 15 background channels, Bay L
- 20 ms integration time
- $T_i(R)$, $V_{\phi}(R)$, $N_{carbon}(R)$
- C VI emission, 5290 Å

NSTX iCHERS Hardware

- Spectrometer, CCD detector and fiber optics reused from TFTR Poloidal Rotation Diagnostic
- Commercial camera lens used for collection optics

Viewing Optics and Fiber Array

NSTX iCHERS Spectrum

- Curved images on CCD due to short focal length spectrometer
- Multiple bins for each fiber
- Spectra for all bins of fiber are restacked and fit
- Each bin is separately calibrated
- Spectra for fiber are fit as ensemble

Interim CHERS Issues

- High quality cross calibration needed between background array and main array.
 - → Instrumental function (in-vessel to fill optics properly)
 - → Wavelength
 - → Photometric (in-vessel)
 - \rightarrow Spatial (in-vessel)
- Large **background emission** requires dual views of plasma and special analysis techniques
- Reflections off NB Armor contaminate background measurement
- Movement of collection optics during run
- Window coatings

In-vessel Instrumental Calibration

- New in-vessel calibration of instrumental function using neon glow
- Characterized by 3 gaussian fit
- Lower temperatures more sensitive to changes in instrumental function

- Ratio of Ti/Te is reduced near edge with new calibration
- May affect power balance calculation

Latest Interim iCHERS Analysis Steps

- 1) **Read data** and assemble calibration information
- 2) **Fit background** spectra for outer radii
- 3) Use fit coefficients to **reconstruct background** spectra at tangency radii and with instrumental function of main array
- 4) Fit primary spectra with background subtracted to get T_i and V_{ϕ} for outer radii
- 5) Interpolate brightness profile from background fit for outer radii
- 6) Invert brightness profile to get emissivity over C VI shell
- 7) Reconstruct background spectra for all radii by summing multiple gaussians using local values of T_i , V_{ϕ} , and emissivity for all lines in spectra
- 8) Fit primary spectra with background subtracted to get T_i and V_{ϕ} for ALL radii
- 9) Iterate once to step 7.
- 10) Repeat for all integration times

Crossing the S/N threshold

• Beam attenuation reduces CX signal in core

0.330 sec

108941

Step in T_i: near threshold of S/N?

- High V_{\phi} separates
 CX and
 background
 features
- Difference in FWHM ~ 1 pixel out of 10 pixels

2 Source H-mode #109054

- Core CX signal weak, dominated by background emission
- Strong CX signal near edge
- Central temperature and velocity in question

3 Source H-mode #109070

- Central sightlines show good S/N
- High PNB yields strong CX signal

STATUS of Analysis

- New instrumental calibration shows changes in Ti profile
- New method of modeling core background spectra required
- Testing will continue as shots are analyzed with improvements applied as needed
 - → Still some numerical instability
 - → Grid size for background reconstruction may be too large
 - → Desire to determine when S/N not adequate
- ANALYZED SHOTS will be generated starting this week, first IAEA requests, then APS requests
 - → May be some limitations for certain shot types or times