Run Summary of the FIReTIP on NSTX

K.C. Lee, C.W. Domier, B.H. Deng, M. Johnson, B.R. Nathan, and N.C. Luhmann, Jr. *University of California at Davis*

> H. K. Park PPPL, Princeton University

NSTX Results & Theory Review September 9, 2002, PPPL

Contents

- Progress and Results from 2001/2002 Campaign
 - Development of FIReTIP System
 - Density Measurement Improvement by Vibration Free Stand
- Physics Studies
 - Para/diamagnetism Study in Conjunction with EFIT
 - **Edge Density Studies**
 - * Transition Physics (L-H Mode)
 - * MHD and Fluctuation
- Conclusion

Density Measurement Improvement by Vibration Free Stand

Typical FIReTIP density time traces before the installation of a vibration free stand (2001)

- Sources of vibrations
 - Stray magnetic field
 - * Magnetic shielding for laser cavity parts
 - Vibrations induced by OH force
 - * through floor : optical table is isolated by air cushion
 - * retro-reflector : installed

vibration free stands

- Characteristics of vibrations
 - ~ 50 microns at ~ 30 Hz

Vibration Free Stand Test

Vibration free stand

Vibration reduced to factor of 10 at 30 Hz

Without Vibration free stand

With Vibration free stand

One full cycle of sine wave corresponds to 0.6micron, number of cycles in a wave packet is proportional to the amplitude of the vibration

Density Measurement with Vibration Free Stands

Density traces (channel #1 and #2), free of mechanical vibration, is demonstrated with the line-integrated Thomson scattering data along the same beam paths (2002)

Para/diamagnetism Study in Conjunction with EFIT Interferometry : $\phi(x) = 2.8 \times 10^{-1.5} \lambda \int_{0}^{x} n(x') dx'$ Polarimetry: $\Psi(x) = 2.6 \times 10^{-13} \lambda^2 \int_0^x n(x') B_{\rm T}(x') dx'$ 16 8 14 FIReTIP Faraday Rotation Angle FIReTIP Faraday Rotation Angle 14 FIReTIP Electron Density (**degree**) **FIReTIP Electron Density** I_{p} (-10kA), Φ_{F} (degree) TF Coil Current --- TF Coil Current n_e (x10¹³/cm³) Shot No. 108741 (x10¹³/cm³) Shot No. 108741 ф IOKA), 2 Tangency=32cm Tangency=57cm 0 -2 -2 0.7 0.2 0.3 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.0 0.4 0.5 0.7 0.8 0.0 0.1 0.1 0.6 0.9 time(sec) time(sec)

Faraday rotation data were smoothed by filtering out high frequency components above 33Hz

Para/diamagnetism Study in Conjunction with EFIT

Difference in Faraday rotation angle between vacuum field and presence of diamagnetic effects (~0.5 kG)

Comparison between Faraday rotation data and calculated rotation angles using both vacuum magnetic field and magnetic field calculated by EFIT equilibrium code (2001)

Edge Density Transition (L-H Mode)

Time evolution of density shows the "ear structure" of the spherical torus

Correlation of Density Rise with Da Emission

- Subtraction ch2 from ch1 indicated sudden rise of L-H mode transition
- FIReTIP edge channels(ch6,ch7) will provide high time resolution data at the edge
- FIReTIP (ch1-ch2) density rise is more close to Da/diverter than Da/center stack
- Near future we will install IF system dedicated for the low frequency fluctuation measurements

Examples of MHD and CHI plasma measurements

Density evolution during the Coaxial Helicity Injection (CHI)

Conclusion

- Stark-tuned laser provided a potential for the high time resolution (up to ~MHz) and convenient control of the beat waves.
- Density measurement was improved by vibration free stand
- System upgrade including channel expansion is in progress
- Para/diamagnetism (EFIT) and edge density (L-H transition) will be the focus
- Future physics studies : edge turbulence, real time density control and full profile study

