

Initial Neutral Particle Analyzer Measurements of Energetic Ion Distributions in NSTX

S. S. Medley and A.L. Roquemore

Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ, 08543 USA

NSTX Results Review September 9 - 10, 2002

NB Energetic Ion Distribution: Horizontal Scan Data

Source B @ 80 keV, t_{inj} = 80 msec

NB Energetic Ion Distribution: Initial Scan Results

• E_{\perp} fill at $R_{tan} \leq 20$ cm

NB Source	<u>A</u>	<u>B</u>	<u>C</u>
∆t (msec)	60	60	40
Flux Level	1	1	2
• τ _{slow}	<	τ _{scattering}	
15-25 msec		40- 60 msec	

• Energetic ion spectrum depletes with:

- increasing \mathbf{n}_{e}
- decreasing outer gap
- H mode

All effects decrease beam penetration

NPA Shows Fast Ion Tail Build-up and 'Classical' Decay After HHFW Turn-off

- HHFW turns off at t=200ms
- HHFW+NBI fast ion interactions at $\omega/\Omega_{\rm D}\approx 9$
- NBI Source A on throughout
- D⁺ tail extends to 140keV
- Tail saturates in time during HHFW

Effect of MHD on NPA Measurements in the "<u>Fast ion</u>" Energy Range (E_D ~ 5 - 85 keV)

- Peak NB power of 3 MW is injected during I_p - 1 MA flat top panel (a)
- A large n=2 mode grows @ 0.26 sec followed by n=1 @ 0.32 sec panels (b) and (d)
- Neutron rollover and fast ion loss occurs at start of n=2 activity
 panel (c)
- MHD activity produces both fast ion loss and thermal ion loss (not shown)

NPA Measurements in the "Fast ion" Energy Range $(E_D \sim 5 - 85 \text{ keV})$ during IRE Events

• Shown are two large reconnection events (solid vertical lines) preceded by two small IREs (dashed lines). IREs occur when $q(0) \le 1$ - panel (b)

- Neutron yield crashes due to IREs panel (c), then recovers as NBI continues
- NPA fast ion spectrum is promptly depleted during IREs without the redistribution signature seen in the thermal energy range panel (d)

• After IREs, NBI continues and the fast ion spectrum rebuilds. The NPA signal becomes larger during I_p rampdown due to increasing CX neutral target density

Summary

- The Neutral Particle Analyzer on NSTX has provided measurements of the evolution of the D⁺ NB energetic ion distribution (E ~ 5 - 95 keV)
- Horizontal scan capability is producing quality fast ion energy distribution vs R_{tan} measurements. TRANSP simulation of NPA results will be available soon.
- An energetic ion tail up to ~ 140 keV is formed on the E ≤ 80 keV D⁺ NB ion distribution in the presence of HHFW injection. Tail formation observed for R_{tan} = 40 - 70 cm.
- MHD activity causes gradual loss energetic ion distributions: R_{tan} effects being analyzed
- IRE activity causes prompt loss of energetic ions: observed at all R_{tan}

