

ISD overview -High β, Long Pulse

D. Gates NSTX Results review 9/9/02

XP's and XMP's

- R. Maingi H-mode HFS/LFS fueling
- J. Menard
 - XP-222 Early HHFW
 - XP-229 NBI long-pulse
- F. Paoletti
 - XP 210 Dependence of resistive wall stabilization on Equilibrium configuration
- D. Gates
 - XP 220 High β , High $\beta\tau$, High stored energy H-mode plasmas (w/ R. Maingi)
 - XP 228 Long pulse high current plasmas at high triangularity
- D. Gates and J. Ferron
 - XMP 24 rtEFIT/isoflux control commissioning

Outline

STX

- Will cover APS topics
 - High β , High $\beta\tau$, High stored energy
 - Long pulse (also covered by J. Menard)
 - High $\beta_N / l_i \sim 10$
- rtEFIT commissioning

Strong shaping key to high β

Shot= 108989, time= 270ms

- High triangularity and elongation raises edge q for fixed current, toroidal field
 - Effect stronger at low A
 - *A* ~ 1.4
 - *K* ~ 2.0
 - $-\delta \sim 0.8$
- Can reach higher I/aB
- Also allows more rapid I_p ramp

$\beta_t = 34\%$ achieved on NSTX

- $\beta_t (=2\mu_0 < P > /B_t^2)$ of 34% achieved in high triangularity double null Hmode discharge
- $\beta_N \sim 6.3$
- $l_i \sim 0.8$
- $I_p = 1$ MA
- $B_t = 0.3 \mathrm{T}$
- $P_{NBI} = 5 \mathrm{MW}$

Early TRANSP results promising

- Stored energy in good agreement using measured n_e, T_e, T_i
- Ion temperature still preliminary
 - Stored energy not sensitive to details of T_i profile

High stored energy

- Reached 20%
 beta at
 5.5kGauss
- 7MW injected power
- Loop voltage low

ISTX

High $\beta \tau_E$

- Highest product achieved in high δ
 DND H-mode plasmas
- MHD causes flattop - limits confinement
- As in most long pulse discharges on NSTX confinement improves with time (rotation?)

Non-inductive current ~60% in high β_p discharges

• Bootstrap current crucial to the ST concept

VSTX

- Loop voltage < 200mV for > 0.4s
- Single null offers easier H-mode access

Access to high- β high bootstrap fraction target exists

rtEFIT development

- rtEFIT/isoflux control demonstrated
- ~ 5 plasma shots with control enabled
- rtEFIT (slowloop) reconstructions every 20ms

– Optimization has reduced this to ~12ms

• Small errors in boundary due to bad fiber optic units

rtEFIT reconstructions accurate

- Use same vessel model as offline EFIT
- Errors due to bad real time data channels
 - 4 adjacent
 Mirnovs (worst case)

Control using rtEFIT/isoflux

- Outward motion due to initial boundary error
- Plasma comes back under control!
- Further optimization required :-)

VSTX

Summary

- XP's in the ISD ET was very successful at incorporating physics learned from other ET's and utilizing this information to optimize operational scenarios
- There is a lot more to come