The Resistive Wall Mode and Global Mode Stability Limits in NSTX

S. A. Sabbagh¹, J. Bialek¹, B. LeBlanc², J. Menard², F. Paoletti¹, R. E. Bell²,
M. Bell², A. M. Garofalo¹, D. Gates², A. H. Glasser³, S. M. Kaye², L. L. Lao⁵,
R. Maingi⁶, D. Mueller², G. A. Navratil¹, M. Ono², M. Peng⁶, D. Stutman⁴, W. Zhu¹, and the NSTX Research Team

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
³Los Alamos National Laboratory, Los Alamos, NM, USA
⁴Johns Hopkins University, Baltimore, MD, USA
⁵General Atomics, San Diego, CA, USA
⁶Oak Ridge National Laboratory, Oak Ridge, TN, USA

NSTX Results Review

PPPL - September 9th, 2002

NSTX operating at sufficiently high beta to study beta-induced rotation damping physics

Research Plan

- Establish high beta, wall-stabilized plasma
- Evaluate global mode passive stabilization physics
- Determine rotation damping mechanisms and physics

• Outline

- Expansion of high beta operating space in CY02
- Global mode stabilization by conducting plates
- Physics of the resistive wall mode, including rotation damping

CY02 plasma operation now in wall-stabilized space

Maximum β_N strongly depends on pressure peaking

 Time-dependent calculations required to evaluate stability limits and mode structure

Physics improvements yielded higher, sustained β_N

Reduction of static error field

- Reduced incidence of low beta locked modes
- May have reduced rotation damping by mode resonances and beta-driven error field amplified rotation damping

Maintenance of increased q_{min} > 1

- Previous high β, high static error field plasmas with q(0) < 1 typically collapsed without recovery</p>
- Based on EFIT reconstruction, rather than q measurement
 - Reconstruction constraint "calibrated" to yield correct timing of q(0) appearance and measured inversion radius

H-mode operation

- □ Significant broadening of pressure profile => $F_p = p(0)/(< 1.9$
- Profiles are naturally approaching optimal stability profiles (!)

H-mode broadening of pressure profile raises beta limit

CY01 RWM induced LMD signal has far greater magnitude than CY02
 NSTX

N=1 error field significantly reduced by PF5 correction

- n=3 is largest predicted amplitude
 - 4 Gauss at plasma boundary
 - Localized effect from coil feeds

Calculations assume I_{PF5}=10kA

before correction

- BLUE = measured coil radius, before correction
- GREEN = measured coil radius, <u>after correction</u>

Ideal MHD stability compared to plasma evolution

- "Between-shots" stability analysis using DCON
- First beta collapse occurs when with-wall β limit is violated
 - Pre-H-mode
 - Plasma recovery a new feature since PF5 error field reduced
- High β_N plasma computed stable with NSTX wall
 - No-wall limit mildly violated
 - Rotation insufficient for passive stabilization?

CY02 data show details of passive stabilization

- For stabilization to occur (simplest case)
 - $\square \quad \beta_{N} > \text{ideal no-wall limit}$
 - Toroidal rotation > Ω_{crit} (typically defined at rational surface)

□ Mode must couple to wall => $\gamma^* \tau_{wall} \sim 1$

Data shows

- **D** Plasmas have exceeded ideal no-wall β limit by > 30%
- \square Ω_{ϕ} must remain sufficiently large (preliminary result: need CHERS)
- $\hfill\square$ Plasmas have reached with-wall limit and suffered β collapse
- Mode growth rate dependent on beta
 - wall less effective at higher beta due to higher instability drive and change of mode structure
- Plasma drops to lower beta (near no-wall ideal limit) during high beta "cycles", where the wall regains stabilization effect.
- □ NOTE: CHERS DATA is core only and is *preliminary*

$\frac{Theoretical \ mode \ passive \ stabilization \ growth}{rate \ depends \ on \ \beta_N}$

- VALEN calculations based on extrapolation of shot 106165
- Growth rate also depends on mode structure

VALEN: J. Bialek

Mode intensifies in divertor region at highest β_N

VALEN / DCON

Increased pressure drive and mode structure change yield lower growth time

Passive stabilization effective with sufficient V_d

Beta collapse on timescale τ_{wall}

- VALEN growth time = 20ms
- **Duration** ~ 3.5 τ_{wall}
- Passive stabilizer effectively slows growth in this condition
- Rapid rotation damping slows plasma in ~ τ_{wall} , leading to β collapse

Passive stabilization less effective at highest β_N

- Plasma sustained at 30% over no wall limit for 18 τ_{wall}
- Passive stabilizer loses effectiveness at maximum β_N
 - VALEN growth time now much shorter (0.03 ms) at collapse time
 - $V_{\phi}(0) \text{ increases} \text{ as } \beta_N >> \beta_N \text{ no-wall}$
 - $\begin{array}{l} \text{Stabilizer regains} \\ \text{effectiveness after} \\ \beta_{\text{N}} \text{ collapse} \end{array}$
- Operation above no-wall limit ceases when $V_{\phi}(0)$ small

CY02 beta limit with reduced error field independent of plasma proximity to wall

- At β_N ~ 5, mode is well-coupled to the wall, independent of gap
- Higher error field in CY01 may also have caused lower limit with smaller outer gap
 - Increased rotation damping

RWM Identified and Linked to Rapid Rotation Damping

- Three phases of rotation damping in RWM evolution
 - (1) Slow rotation damping, mode not detected in LMD
 - (2) Beta saturation and reduction; increased V_{ϕ} damping
 - □ (3) Very rapid V_o decrease over $\Delta t \sim \tau_{wall}$, followed by rapid beta collapse; mode detected in LMD, but not always at high B_t > 0.4 T.
- RWM is pressure driven
 - Non-beta effects may reduce toroidal rotation before RWM onset
 - Error field resonances, islands, density increase
- Global mode observed as precursor to enhanced rotation damping

<u>RWM observed at $B_t = 4kG$ and is pressure dependent</u>

–🕖 NSTX

t (s)

Core rotation damping rate dependent on B_t

- Largest rotation damping at B_t < 0.4T, q_{min} < 2 (dV₀/dt ~ -600 kHz/s)
 Factor of 8 times larger than damping from n=2 island (2001 result)
- When $q_{min} \sim 2$, initial rotation damping rate is reduced and V_{ϕ} is maintained longer
- Theory expects rotation damping rate to depend on rational surfaces in plasma. Is q_{min} > 2 cause of lower rotation damping?

Many key RWM physics results await CHERS data

- Identification of the RWM
 - \Box V_{ϕ} rotation damping (profile) most sensitive indication of RWM
- Rotation damping profile
 - Effect of error field resonance; rational surfaces in RWM plasma
- Rotation damping rate scaling with δB_r
- Critical rotation frequency
 - Need V_o profile evolution to determine Ω_{crit}
 - **Does** Ω_{crit} scale with Alfven speed, or sound speed?
 - **Compare** Ω_{crit} to theory: Gimblett-Hastie; Fitzpatrick-Aydemir
- Resistive wall mode operational space
 - Trajectories in (β_N , V_{ϕ} space) and comparison to RWM stability theories

Fitzpatrick-Aydemir RWM Stability Space

Access to high beta conceptual design target exists

Need to determine passive stabilizer effectiveness along access path
 NSTX

Research on passive stabilization, RWM and rotation damping physics has begun

- Plasmas have exceeded ideal no-wall β_N limit by 30%
- The β_N limit strongly decreases with increasing pressure profile peaking
- Passive stabilizers can become ineffective at highest β_N due to increased pressure drive and altered ST mode structure
- Mode measured by Thomson that correlates with onset of enhanced rotation damping when $\beta > \beta_N$.
- Core rotation damping rate dependent on B_t

May be related to eliminating drag-inducing q = 2 surface

• More key RWM / rotation damping physics questions may be addressed, but only when $V_{\phi}(R,t)$ becomes available!