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NSTX

NSTX operating at sufficiently high beta to 
study beta-induced rotation damping physics

• Research Plan
! Establish high beta, wall-stabilized plasma
! Evaluate global mode passive stabilization physics
! Determine rotation damping mechanisms and physics

• Outline
! Expansion of high beta operating space in CY02
! Global mode stabilization by conducting plates
! Physics of the resistive wall mode, including rotation damping
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CY02 plasma operation now in wall-stabilized space
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• Normalized beta, βN = 6.5, with βN/li > 9.5;  βN > 30% over βN no-wall

• Toroidal beta has reached 34%



NSTX

Maximum βN strongly depends on pressure peaking

• Time-dependent calculations required to evaluate stability limits 
and mode structure
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NSTX

Physics improvements yielded higher, sustained βN

• Reduction of static error field
! Reduced incidence of low beta locked modes 
! May have reduced rotation damping by mode resonances and 

beta-driven error field amplified rotation damping

• Maintenance of increased qmin > 1
! Previous high β,  high static error field plasmas with q(0) < 1 

typically collapsed without recovery
! Based on EFIT reconstruction, rather than q measurement

• Reconstruction constraint “calibrated” to yield correct timing of q(0) 
appearance and measured inversion radius 

• H-mode operation
! Significant broadening of pressure profile => Fp = p(0)/<p> < 1.9
! Profiles are naturally approaching optimal stability profiles (!)



NSTX

CY02 plasmas operate at high βN for longer pulse

• H-mode broadening of pressure profile raises beta limit

• CY01 RWM induced LMD signal has far greater magnitude than CY02

CY 2001 RWM (High error field) CY 2002 (reduced error field)
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NSTX

N=1 error field significantly reduced by PF5 correction

• n=1 amplitude reduced by factor of 12

• n=2 amplitude increased slightly
! Still only 2 Gauss at plasma edge

• n=3 is largest predicted amplitude 
! 4 Gauss at plasma boundary
! Localized effect from coil feeds

• RED = magnetic measurements

before correction

• BLUE =   measured coil radius, 
before correction

• GREEN = measured coil radius, 
after correction

Calculations assume IPF5=10kA J. Menard
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Ideal MHD stability compared to plasma evolution 
• “Between-shots” 

stability analysis 
using DCON

• First beta collapse 
occurs when with-
wall β limit is violated
• Pre-H-mode
• Plasma recovery a 

new feature since 
PF5 error field 
reduced

• High βN plasma 
computed stable with 
NSTX wall
• No-wall limit mildly 

violated
• Rotation insufficient 

for passive 
stabilization?
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NSTX

CY02 data show details of passive stabilization
• For stabilization to occur (simplest case)

! βN > ideal no-wall limit
! Toroidal rotation > Ωcrit (typically defined at rational surface)
! Mode must couple to wall => γ*τwall ~ 1

• Data shows 
! Plasmas have exceeded ideal no-wall β limit by > 30%
! Ωφ must remain sufficiently large (preliminary result: need CHERS)
! Plasmas have reached with-wall limit and suffered β collapse
! Mode growth rate dependent on beta

• wall less effective at higher beta due to higher instability drive and 
change of mode structure

! Plasma drops to lower beta (near no-wall ideal limit) during high 
beta “cycles”, where the wall regains stabilization effect.

! NOTE: CHERS DATA is core only and is preliminary
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Theoretical mode passive stabilization growth 
rate depends on βN

• VALEN calculations 
based on 
extrapolation of shot 
106165

• Growth rate also 
depends on mode 
structure
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NSTX

Mode intensifies in divertor region at highest βN

• Increased pressure drive and mode structure change yield lower 
growth time

βN = 5.1
VALEN / DCON

βN = 7.1



NSTX

Passive stabilization effective with sufficient Vφ

• Beta collapse on 
timescale τwall

! VALEN growth 
time = 20ms

! Duration ~ 3.5 τwall

• Passive stabilizer 
effectively slows 
growth in this 
condition

• Rapid rotation 
damping slows 
plasma in ~  τwall, 
leading to β
collapse
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Passive stabilization less effective at highest βN
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NSTX

CY02 beta limit with reduced error field independent 
of plasma proximity to wall

• At βN ~ 5, mode is 
well-coupled to the 
wall, independent of 
gap

• Higher error field in 
CY01 may also have 
caused lower limit with 
smaller outer gap
! Increased rotation 

damping
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NSTX

RWM Identified and Linked to Rapid Rotation 
Damping

• Three phases of rotation damping in RWM evolution
! (1) Slow rotation damping, mode not detected in LMD
! (2) Beta saturation and reduction; increased Vφ damping
! (3) Very rapid Vφ decrease over ∆t ~ τwall, followed by rapid 

beta collapse; mode detected in LMD, but not always at high 
Bt > 0.4 T.

• RWM is pressure driven
! Non-beta effects may reduce toroidal rotation before RWM 

onset
• Error field resonances, islands, density increase

• Global mode observed as precursor to enhanced 
rotation damping
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RWM observed at Bt = 4kG and is pressure dependent

• VALEN growth time     =>      2 NBI: 58 ms                    3 NBI: 34 ms

1 NBI source 2 NBI sources 3 NBI sources
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NSTX

Te perturbation measured during RWM

• δTe is an asymmetric kink-type 
displacement

• Core rotation damping greatly 
increases as kink develops
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NSTX

Core rotation damping rate dependent on Bt

• Largest rotation damping at Bt < 0.4T, qmin < 2  (dVφ/dt ~ -600 kHz/s)
! Factor of 8 times larger than damping from n=2 island (2001 result)

• When qmin ~ 2, initial rotation damping rate is reduced and Vφ is maintained 
longer

• Theory expects rotation damping rate to depend on rational surfaces in 
plasma. Is qmin > 2 cause of lower rotation damping?
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NSTX

Many key RWM physics results await CHERS data

• Identification of the RWM
! Vφ rotation damping (profile) most sensitive indication of RWM

• Rotation damping profile
! Effect of error field resonance; rational surfaces in RWM plasma

• Rotation damping rate scaling with δBr

• Critical rotation frequency
! Need Vφ profile evolution to determine Ωcrit

! Does  Ωcrit scale with Alfven speed, or sound speed?
! Compare Ωcrit to theory: Gimblett-Hastie; Fitzpatrick-Aydemir

• Resistive wall mode operational space
! Trajectories in (βN, Vφ space) and comparison to RWM stability 

theories
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Fitzpatrick-Aydemir RWM Stability Space

• Simplified model of RWM 
stability
! Cylindrical, single “m” 

number

• Dispersion relation 
includes 
! error field resonance 

drag
! RWM drag

• RWM “second stability” is 
a possible hypothesis for 
shot 108420
! Need CHERs rotation 

profile evolution to map 
out NSTX trajectory in 
this space
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Access to high beta conceptual design target exists
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• Need to determine passive stabilizer effectiveness along access path
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Research on passive stabilization, RWM and 
rotation damping physics has begun 

• Plasmas have exceeded ideal no-wall βN limit by 30%

• The βN limit strongly decreases with increasing pressure 
profile peaking

• Passive stabilizers can become ineffective at highest βN
due to increased pressure drive and altered ST mode 
structure

• Mode measured by Thomson that correlates with onset of 
enhanced rotation damping when β > βN.

• Core rotation damping rate dependent on Bt
! May be related to eliminating drag-inducing q = 2 surface

• More key RWM / rotation damping physics questions may 
be addressed, but only when Vφ(R,t) becomes available!


