M3D Simulation Studies of NSTX

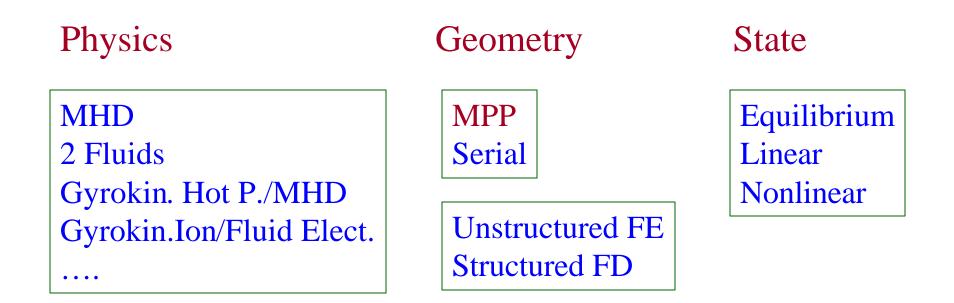
W. Park, J. Breslau, J. Chen, G.Y. Fu, S.C. Jardin, S. Klasky,J. Menard, A. Pletzer, D. Stutman (PPPL)H.R. Strauss (NYU)L.E. Sugiyama (MIT)

Outline

- M3D code
 - MHD, two-fluids, hybrid models.
- NSTX studies including flow effects
 2D steady states.
 Evolutions of IRE's.
 BAE modes.

W. Park et al., Phys. Plasmas **6**, 1796 (1999) http://w3.pppl.gov/~wpark/pop_99.pdf

Multilevel 3D Project for Plasma Simulation studies Various physics levels are needed to understand the physics. The best method depends on the problem at hand.



MHD model

Solves MHD equations.

 $\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \mathbf{J} \times \mathbf{B} + \mu \nabla^2 \mathbf{v}$ $\partial \mathbf{B} / \partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = (-\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}), \quad \mathbf{J} = \nabla \times \mathbf{B}$ $\partial \rho / \partial t + \nabla \cdot (\rho \mathbf{v}) = 0$ $\partial p / \partial t + \mathbf{v} \cdot \nabla p = -\gamma p \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa \nabla (p/\rho)$

The fast parallel equilibration of T is modeled using wave equations;

$$\begin{pmatrix} \partial T / \partial t = s \mathbf{B} / \rho \cdot \nabla u \\ \partial u / \partial t = s \mathbf{B} \cdot \nabla \mathbf{T} + \upsilon \nabla^2 u & s = wave speed / v_A \end{pmatrix}$$

Two-fluid MH3D-T

 Solves the two fluid equations with gyro-viscousity and neoclassical parallel viscousity terms in a torus.

Equations

$$\mathbf{v} \equiv \mathbf{v}_{i} - \mathbf{v}_{i}^{*} = \mathbf{v}_{e} - \mathbf{v}_{e}^{*} + \mathbf{J}_{\parallel}/\text{en},$$

 $\mathbf{v}_{e}^{*} \equiv -\mathbf{B} \mathbf{x} \nabla \mathbf{P}_{e} /(\text{enB}^{2}), \quad \mathbf{v}_{i}^{*} \equiv \mathbf{v}_{e}^{*} + \mathbf{J}_{\perp}/\text{en},$

 $\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} + \rho (\mathbf{v}_i^* \cdot \nabla) \mathbf{v}_{\perp} = -\nabla p + \mathbf{J} \times \mathbf{B} - \mathbf{b} \cdot \nabla \cdot \Pi \mathbf{i},$

 $\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = (-\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}) - \nabla_{\!\!\!\Pi} \mathbf{P}_{\!\!\mathbf{e}} / \mathbf{en} - \mathbf{b} \cdot \nabla \cdot \Pi_{\!\!\mathbf{e}},$ $\mathbf{J} = \nabla \times \mathbf{B},$

```
\partial \rho / \partial t + \nabla \cdot (\rho \mathbf{v}_j) = 0,
```

 $\frac{\partial \mathbf{p}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{p} = -\gamma \mathbf{p} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\parallel} \nabla_{\parallel} (\mathbf{p}/\rho)$ $- \mathbf{v}_{i}^{*} \cdot \nabla \mathbf{p} + (1/en) \mathbf{J} \cdot \nabla \mathbf{p}_{e}$ $- \gamma \mathbf{p} \nabla \cdot \mathbf{v}_{i}^{*} + \gamma \mathbf{p}_{e} \mathbf{J} \cdot \nabla (1/en)$

 $\frac{\partial P_{e}}{\partial t} + \mathbf{v} \cdot \nabla P_{e} = -\gamma P_{e} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa_{\parallel} \nabla_{\parallel} (P_{e} / \rho)$ + (1/en) $\mathbf{J}_{\parallel} \cdot \nabla P_{e} - \gamma P_{e} \nabla \cdot (\mathbf{v}_{e}^{\star} - \mathbf{J}_{\parallel} / en)$

GK Hot Particle /MHD Hybrid MH3D-K

Fluid equations

$$\partial \mathbf{B}/\partial t = -\nabla \times \mathbf{E}, \quad \mathbf{E} = \mathbf{v} \times \mathbf{B} - \eta (\mathbf{J} - \mathbf{J}_h), \quad \mathbf{J} = \nabla \times \mathbf{B}$$

 $\partial \rho / \partial t + \nabla \cdot (\rho \bm{v}) = 0$

```
\partial \mathbf{p} / \partial t + \mathbf{v} \cdot \nabla \mathbf{p} = -\gamma \mathbf{p} \nabla \cdot \mathbf{v} + \rho \nabla \cdot \kappa \cdot \nabla (\mathbf{p} / \rho)
```

Gyrokinetic equations for energetic particles

 $d\mathbf{R}/dt = \mathbf{u}[\mathbf{b} + (\mathbf{u}/\Omega)\mathbf{b} \times (\mathbf{b}\cdot\nabla\mathbf{b})] + (\mathbf{1}/\Omega)\mathbf{b} \times (\mu\nabla\mathbf{B} - q\mathbf{E}/m),$ $d\mathbf{u}/dt = -[\mathbf{b} + (\mathbf{u}/\Omega)\mathbf{b} \times (\mathbf{b}\cdot\nabla\mathbf{b})] \cdot (\mu\nabla\mathbf{B} - q\mathbf{E}/m).$

GK Particle Ion / Fluid Electron Hybrid

Pressure coupling

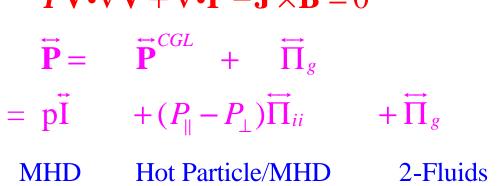
$$\rho \partial \mathbf{v} / \partial t + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \cdot \mathbf{P} \mathbf{i} - \nabla \mathbf{P} \mathbf{e} + \mathbf{J} \times \mathbf{B}$$
$$= -\nabla \cdot \mathbf{P} \mathbf{i}^{CGL} - \nabla \cdot \Pi \mathbf{i} - \nabla \mathbf{P} \mathbf{e} + \mathbf{J} \times \mathbf{B}$$

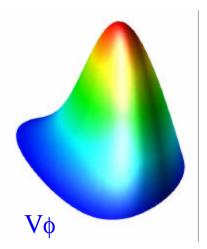
V·Pi^{CGL}: from particles following GK eqns.
 V·Πi : fluid picture as 2 fluid eqns, or from particles.

Fluid electrons E = - Ve × B + ηJ + ∇· Pe /ne = -Ve × B + ηJ + ∇Pe /ne + bb· ∇·Πe /ne ∂B/∂t = -∇×E, J= ∇×B Pe eqn currently, but P_µ and P_⊥ eqns are planned.

2D steady state with toroidal sheared flow

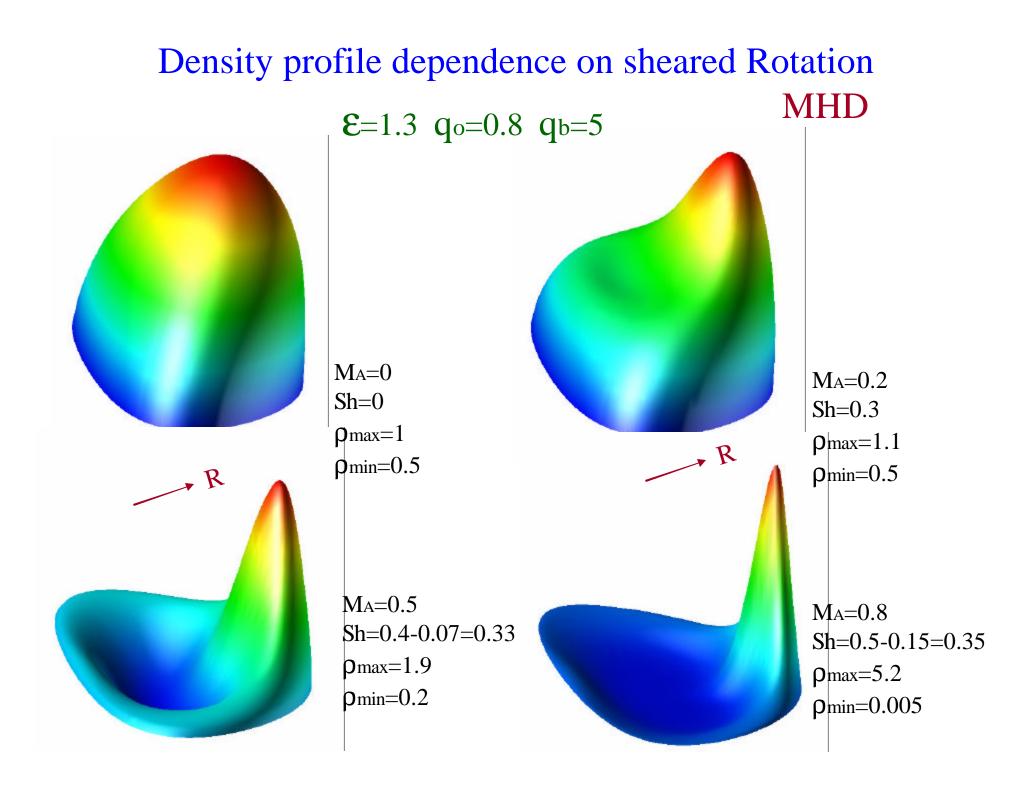
Quasi neutrality: $\mathbf{r}\mathbf{V}\cdot\nabla\mathbf{V} + \nabla\cdot\mathbf{\ddot{P}} - \mathbf{J}\times\mathbf{B} = 0$



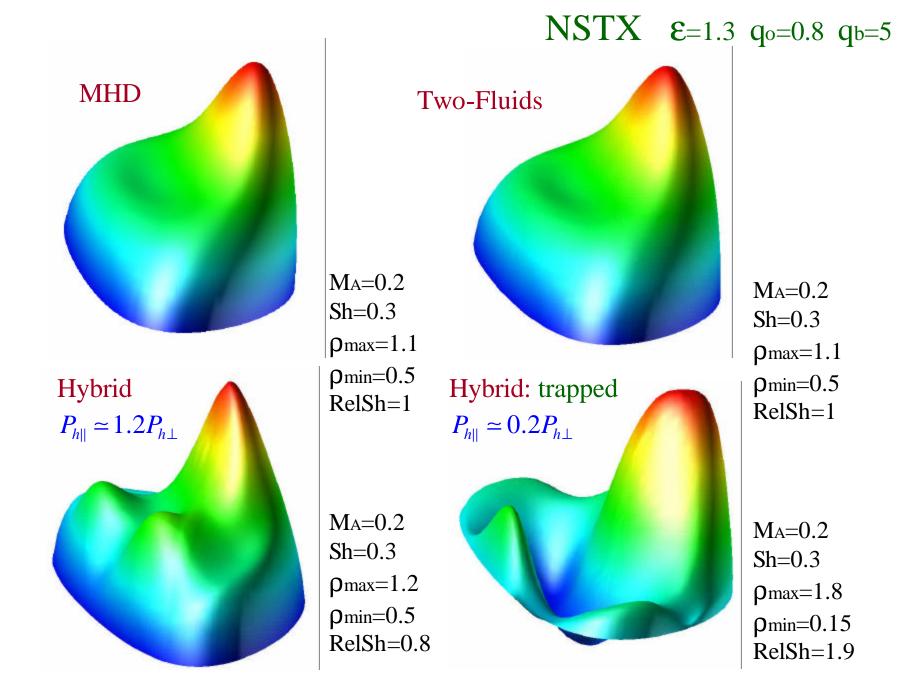


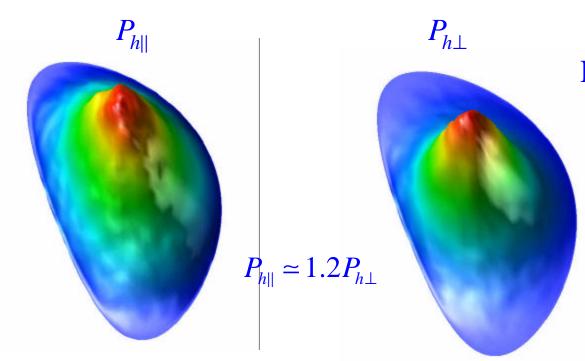
MHD:

At the magnetic axis: $\mathbf{J} \times \mathbf{B} = 0$ $-\frac{\mathbf{r} V_f^2}{R} + \frac{T \partial \mathbf{r}}{\partial R} = 0$ Relative shift of $\mathbf{r} \equiv \frac{R \partial \mathbf{r}}{r \partial R} = \frac{V_f^2}{T} = \frac{2M_A^2}{b}$



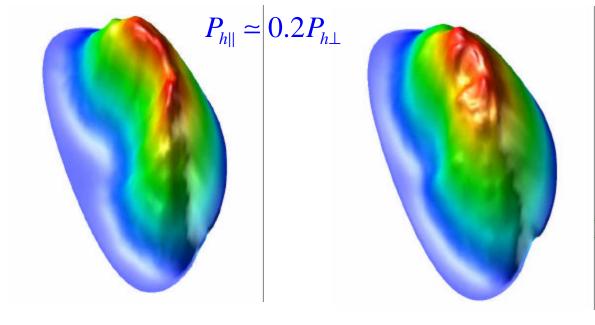
Density profile dependence on Physics model





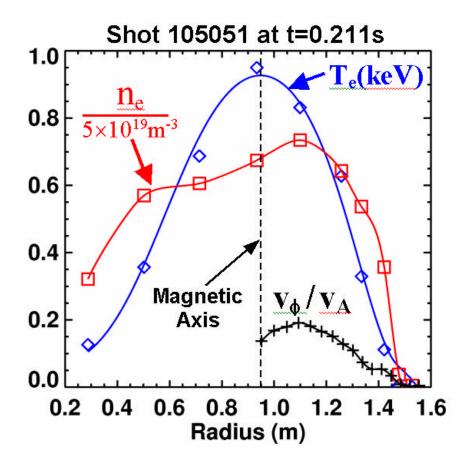
Hot particle pressure \mathbf{P}_h in the hybrid simulation

> Similar to Experimental situation



Mostly trapped particles

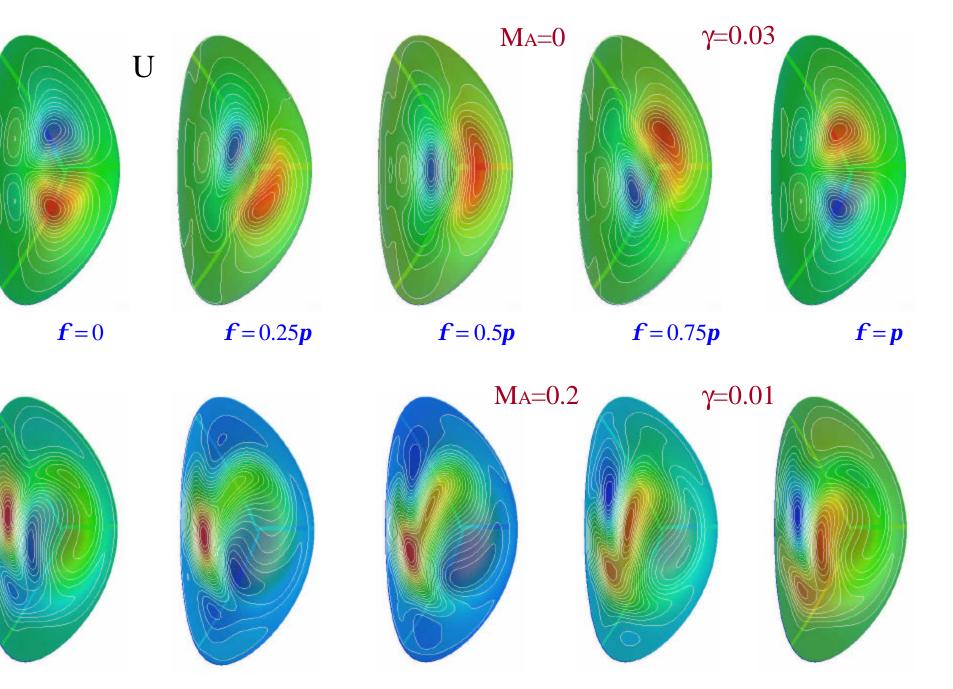
NSTX experimental data



Relative shift of \boldsymbol{r} $\frac{R\partial \boldsymbol{r}}{\boldsymbol{r}\partial R} = \frac{2M_A^2}{\boldsymbol{b}}$

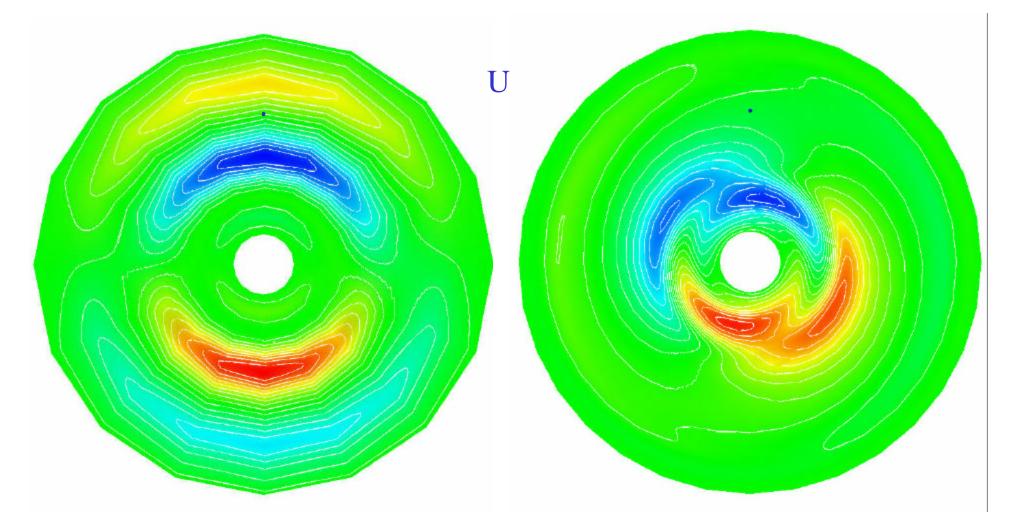
Hot particle centrifugal force ~ Bulk plasma

Linear Eigenmodes: shear flow reduces growth rate

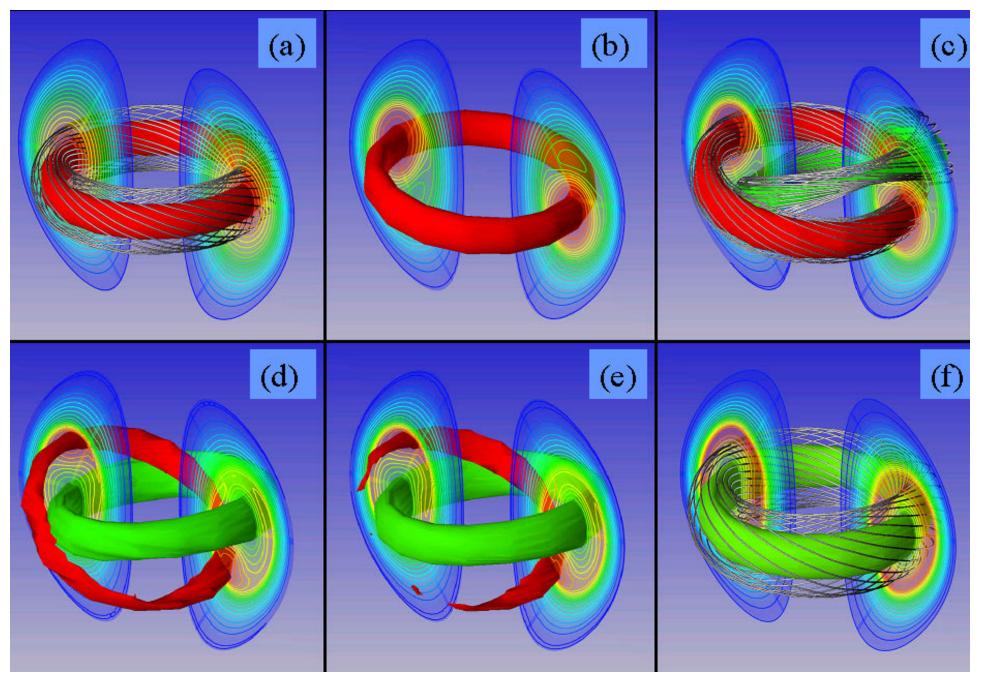


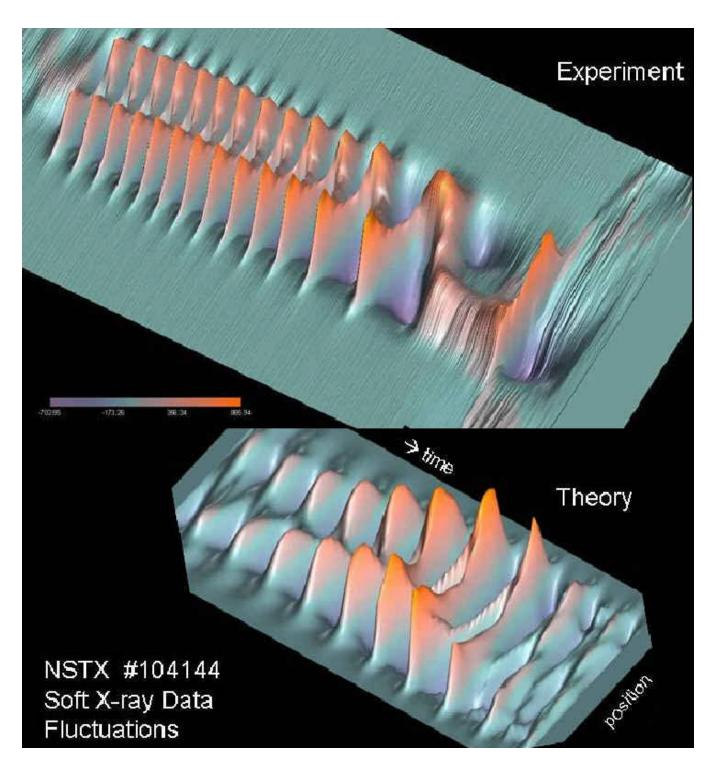
Linear Eigenmodes Top view on the mid-plane

MA=0 Ωm=0 With shear flow: MA=0.2 Rotating mode: Ω m=0.13



Nonlinear Evolution without strong flow: similar to a sawtooth crash

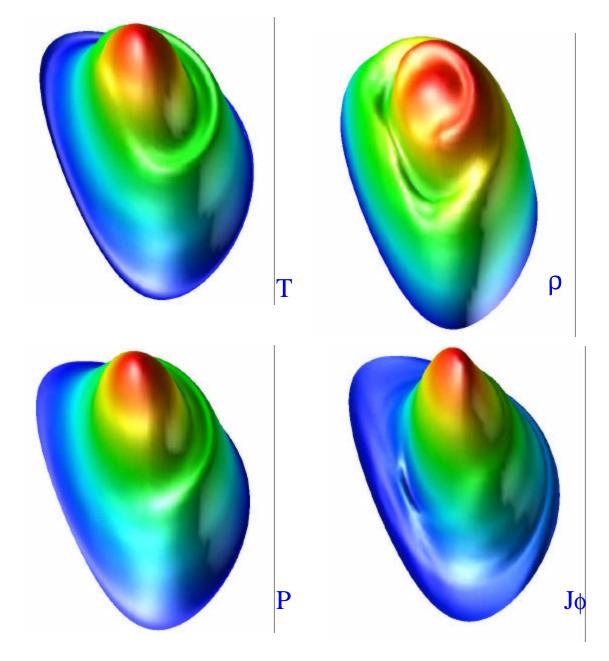


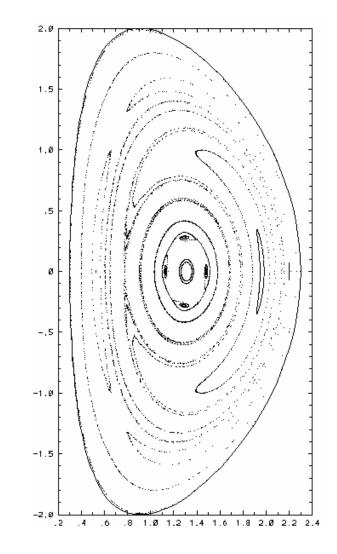


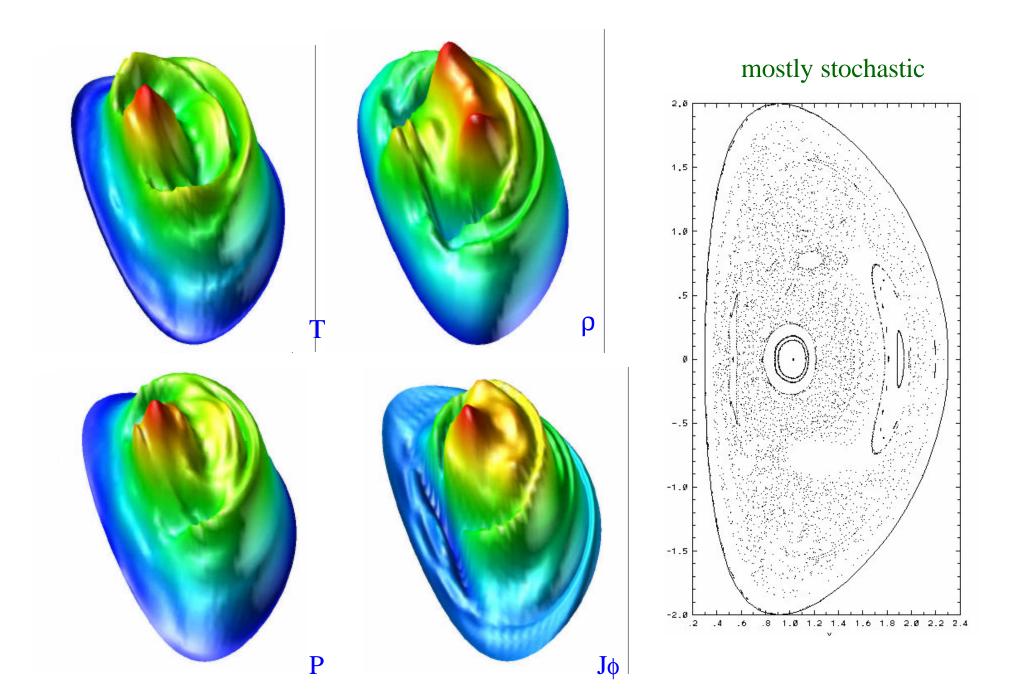
Soft X-ray signals compared:

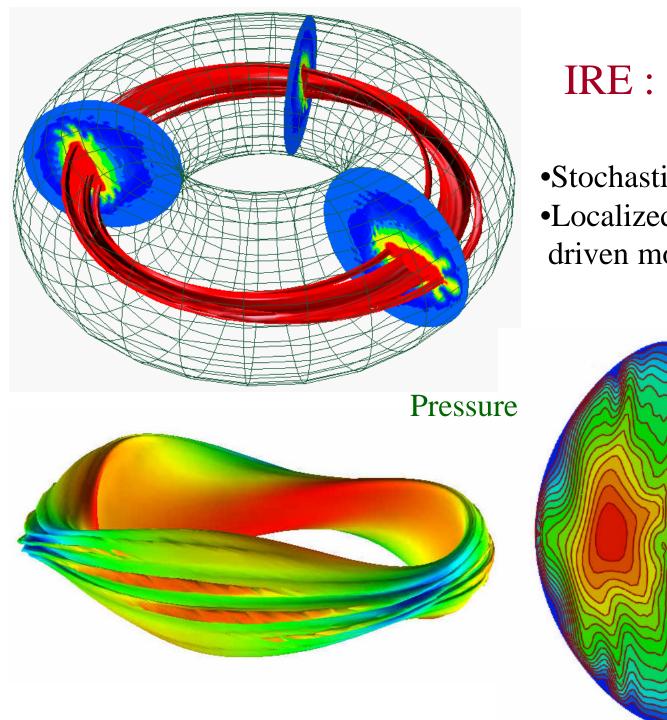
Theory agrees with experiment on general characters, but does not have wall locking and a saturation phase.

Nonlinear Evolution without strong flow





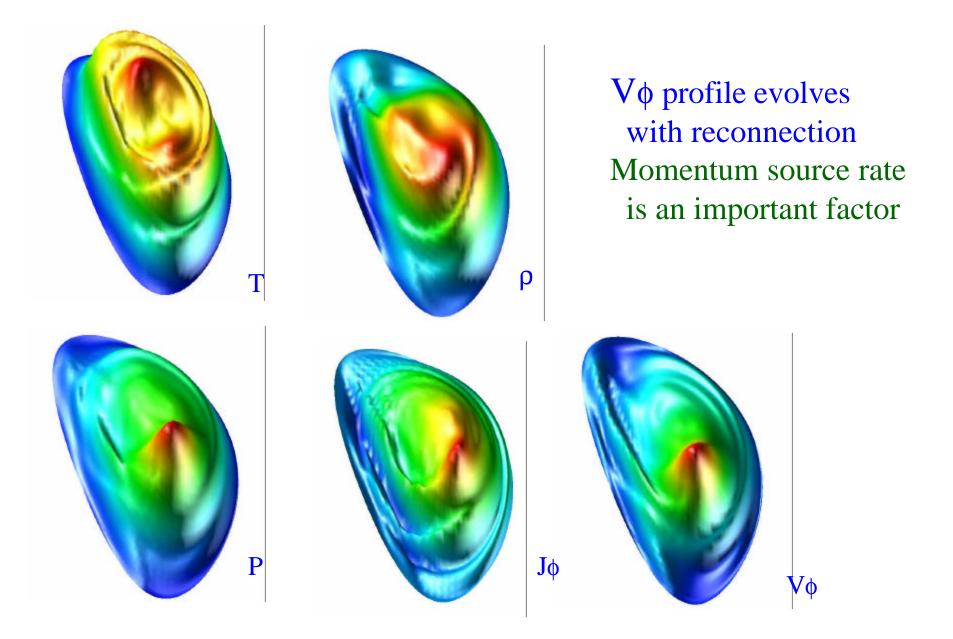




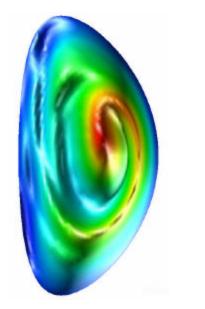
IRE : Disruption

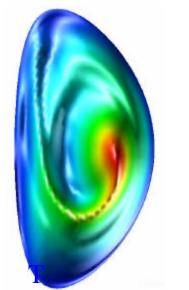
Stochasticity as shown before.
Localized steepening of pressure driven modes as shown here.

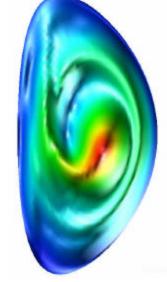
Nonlinear Evolution with peak rotation of $M_A=0.2$

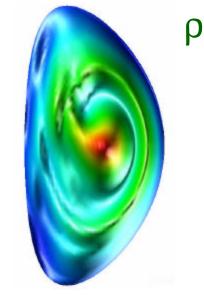


ρ (P) and T out of phase in a saturated case







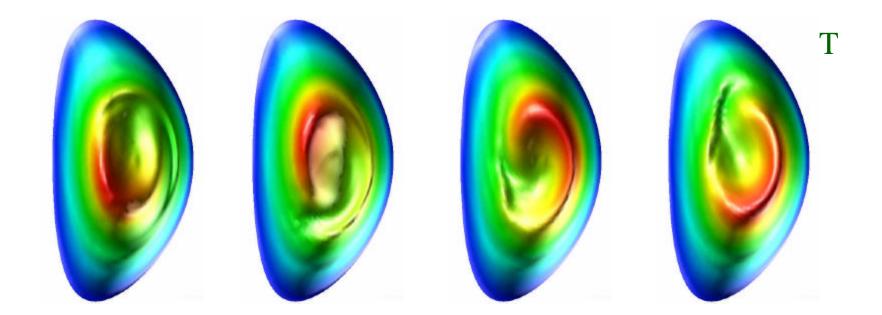


 $\mathbf{f} = 0$

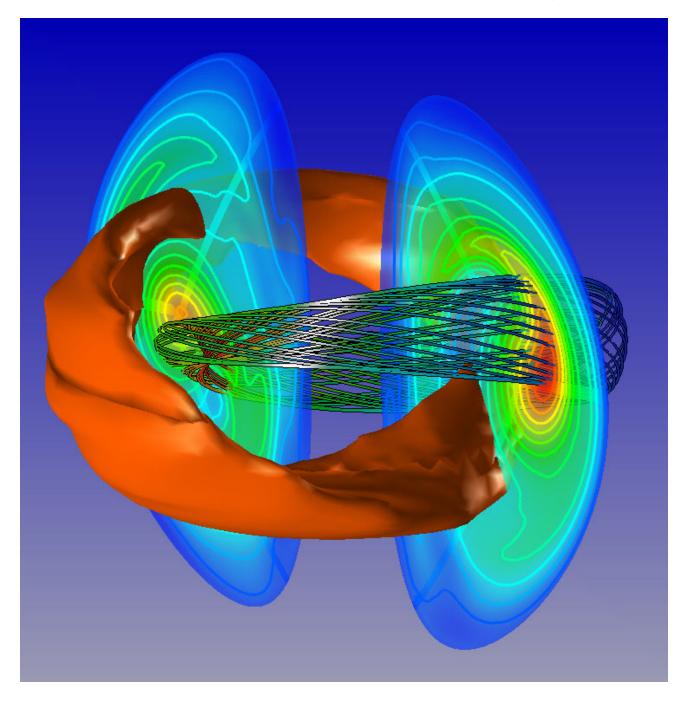
f = 0.5p

f=1.5**p**

f = **p**

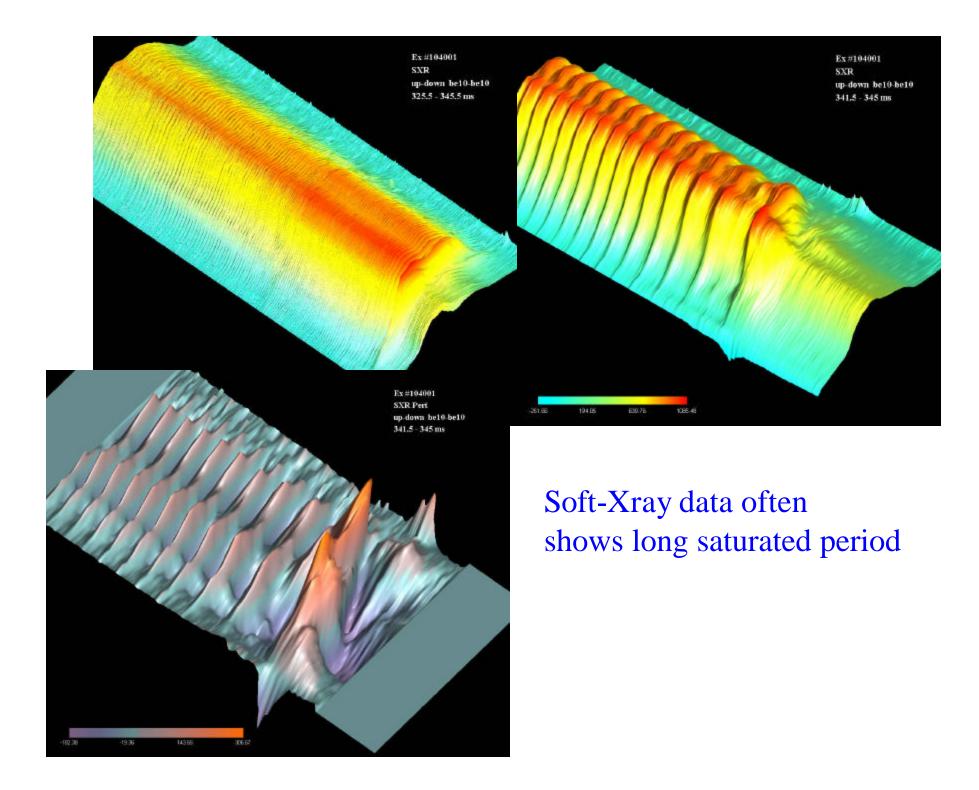


Saturated steady state with strong sheared flow



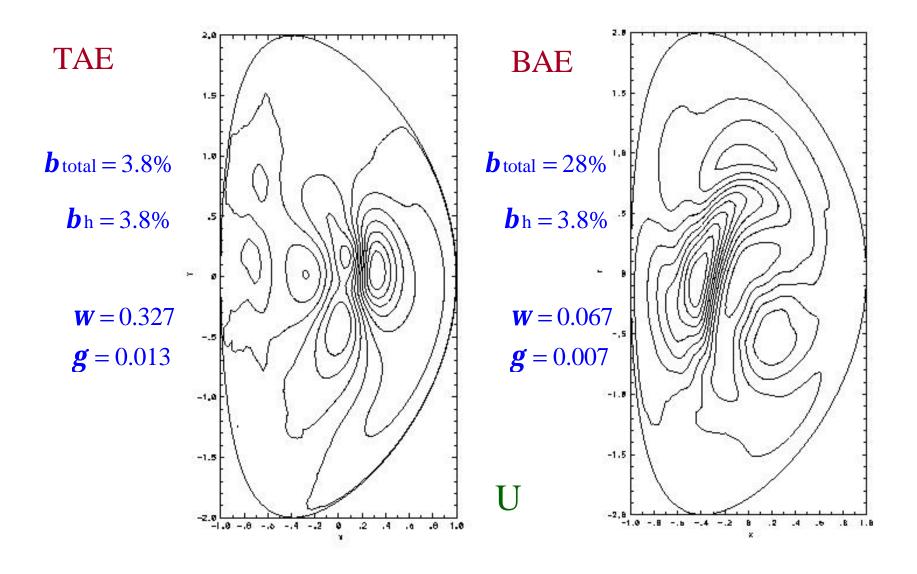
B Field line in the island Density (Pressure) contours Temperature isosurface

Pressure peak inside the island together with shear flow causes the mode saturation.

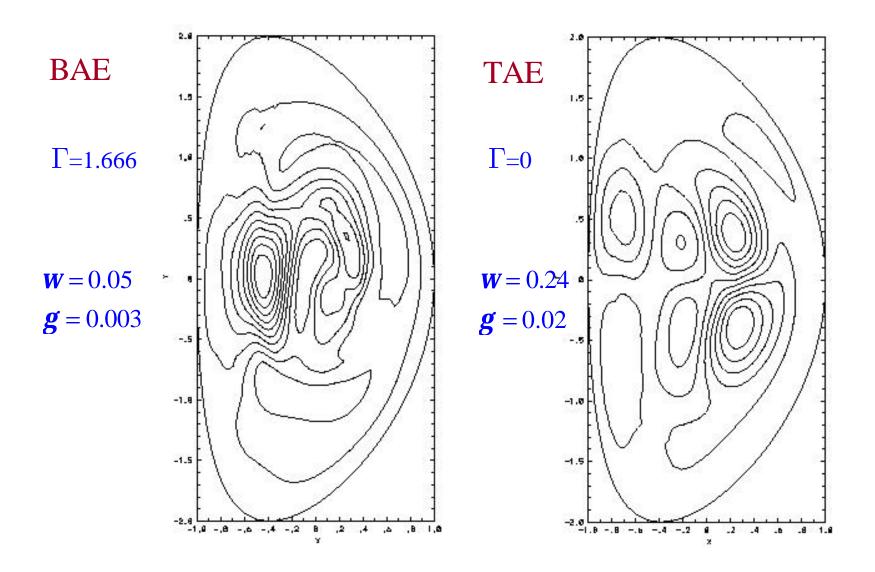


EPM (BAE) is excited at high beta in hybrid simulations

More coupling to sound wave due to stronger curvature and high beta. May explain experimental data.



BAE changes to TAE when Γ is set to zero



Summary

- M3D code with MHD, Two-fluids, and Particle/Fluid Hybrid levels is used to study NSTX.
- The relative density shift relation holds both in the simulation and experiment, with the centrifugal force of the hot component included.
- Toroidal sheared rotation reduces linear growth and can saturate internal kink.
- IRE:Disruption can occur in at least in two ways; due to stochasticity, and due to localized steepening of pressure driven modes.
- BAE mode is found which may explain experimental data.
- Resistive wall, vacuum region, and external coils are being added to M3D code to expand the regime of applicability.