Beam Voltage Threshold for
Excitation of CAE modes

(Progress on other fast ion driven
Instabilities.)

E. Fredrickson
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« Summary/status of CAE studies.
e Recent discoveries TAE studies

 Bounce/precession resonance fishbone
modes.



CAE studies status
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« XP to document voltage threshold
dependence on density, toroidal field was
successfully completed.

e Threshold has strong dependence on beam
energy, weaker dependence on toroidal field.

 Dependence on density awaiting further
analysis, but appears to be there.



Weak dependence of threshold on

Alfvén velocitv
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Frequency in reasonable
agreement with prediction

 Mode frequency to first
orderw= Ky Varen:
where...

* k;estimated from
resonance condition,
W= e — Ky Vi

 Dominant scaling is with

toroidal field, in this data
set.
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More detalled analysis awaiting
theoretical tools, data m:m_<m_m
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* 16/25 shots TRANSPed ?s%o.i T Qmﬁmv

e Some comparisons of shots with/without
modes at "similar" parameters (different
field, same density/ beam voltage, same
field/density, different voltage)
— May need to compare shots from last year and

this year..

| can provide equilibria and fast ion

distributions around CAE threshold.



Neutron decay rate shows no

strong anomaly with new Te
@ NSTx

* Previously, TRANSP neutron prediction low, decay rate too fast.

« New TRANSP calculation with recalibrated Thomson Te shows very good
agreement.

* lon temperature anomaly weaker, but still present.
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Not observed before.

Fast neutron drops
correlated with H-alpha
bursts; fast ions hitting
wall?

1

First neutron drops precede

H-mode transition; also
occur during "dithers".

Small impact on soft x-ray
emission.
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Strong TAE most commonly .}
seen in H-mode plasmas 5
where g(0) is inferred to be 1o
high.
First strong burst precede H- oo L1 L
mode transition. e Neutrops (19 14/5) |
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Fast ion losses seen on IFLIP.
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Strong bursts may reflect N
broader gap structure. o




Multiple modes burst at
the same time.

Toroidal mode number,

ranges from 2 - 5 with th

dominant mode being
n=2 or 3.

Mode frequencies In
reasonable agreement
with expected TAE
frequencies.
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 However, first burst
precedes both events...

 Change in g-profileould
be opening gap,
decreasing continuum
damping...

e ...but not evident from
measured density and

q(0).
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- Continuous or weakly [ T fos704.
bursting TAE/EPM are
more common. \m/ i
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 Some of the mode
amplitude modulation
represents "beating" of
the multiple modes.

. Mode growth and decay

times are approximately
50 - 100us.




Fishbone activity

e High and low frequency fishbones were
found this year on NSTX.

* Theoretical work Is ongoing, but these are
believed to represent resonances with the
precession and bound frequencies and beat

frequencies of these.

* High frequency fishbones also overlap the
"TAE frequency band".



New fishbone resonant drive found In
beam heated NSTX plasmas
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« Bounce resonance drives f.b. e N
* Predicted to be important in (ICa—— ———
plasmas with significant trapped @
fast ion population with large
UOCDOQ m:a—m- (\O_<_>O2_m.20
e Such a distribution often stable =’ "
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Range of frequency chirps in good
agreement with bounce frequency

D NSTX =——
« Beam fast-ion distribution &[T
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The average bounce angle is large,

resulting In strong drive at { ..

 The equation for energy —
change of a trapped
particle Is:
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« For large bounce angles,
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Complicated spectrum below 200 kHz

IN beam heated plasmas
L L e
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Summary

* Progress has been slow over summer

e Theory making progress in CAE modeling,
TAE modeling and f.b. studies

 More data needs to be analyzed
[reflectometers (f.b., TAE structure, CAE
amplitude), sxi (f.b. structure), magnetic
fluctuation data (CAE/TAE polarization,
wavelength)].



