H-mode Access and Characterization with NBI

C. E. Bush, R. Maingi, S. Kaye, S. Kubota, R. Bell, B. LeBlanc, R. Maqueda, D. Mueller, F. Paoletti, S. Sabbagh, V. A. Soukhanovskii, D. Stutman, and S. Zweben

Oak Ridge National Laboratory
 Princeton Plasma Physics Laboratory

NSTX Results Review / Forum 2002 Princeton Plasma Physics Laboratory Princeton, September 9 & 10, 2002

NSTX H-modes are being obtained in an increasingly wider operating window.

- Obtained in lower-single null (LSN) and in double null divertor (DND) Obtained with NBI or RF heating, or both.
- Wide range of NBI heating power: 0.32 7 MW
- Wide n_e range at transition: 1.5 4.8e19 m-3
- Good I_p range: 0.7-1.3 MA (NBI)
- B_t range: 0.3 0.6 T
- The β range: $\beta_t = 32\%$, $\beta_p \le 0.95$
- Duration > 500ms (NBI)
- Power Threshold Studies underway interesting results
- ELM characterization underway

NSTX H-modes in LSN and DN Divertor

Threshold Powers (Pth) Obtained using Parameter and Configuration Scans

- H-mode studies with
 - Pb, Ip, Bt scans
 - Configuration scans
 - Inner Gap scans
- Here Bt = 45 kG, Ip = 900kA
 Pb(@Pth) = 530 kW
 - Note: L-H transition at
 - the same time for all Pb
- At Bt = 45 kG, Ip = 600 kA
 Pb(@Pth) = 315 kW
 ==> Lowest Pth to date

Power threshold presently at 2 times the aspect ratio scaling by Snipes based on ITER H-mode Database

- Vary plasma current
- NBI power varied by voltage scan:
- Ploss ~ 2*Pthaspect
- Dithers or short Hmode phase show up in D_{α} near threshold.

The NSTX H-mode Database Contains more than 500 shots following the "Good" bakeout

L-H Threshold Study Shows Possible I_p Dependence of P_{th}

H-mode Global Confinement is Enhanced in NSTX over that for Conventional Aspect Ratio Tokamaks.

Wide Spectrum of ELM Characteristics Realized on NSTX

Edge Localized Modes Decrease(Increase) in Amplitude(Frequency) with Heating Power

The Divertor Configuration Affects the Transition and the ELM Behavior in NSTX

Large ELMs dump edge plasma and effect is radially deep into plasma

What ELM Studies are Needed?

• <u>Studies for control:</u>

- ELM studies have just begun on NSTX
- Need control of ELM parameters, divertor loading, accumulation
- Must scale ELM behavior to next generation ST and ST reactor
- Is ELM behavior the same for Tokamak and ST?

Studies needed:

- Stability Determination of precursors Mode numbers, n
- Scaling of energy loss per ELM
- Particle loss per ELM n_e and impurity control
- ELM control Variation of ELM with ST scenario

Needs for APS:

More examples of H-mode Images

H-mode with blob

Wavy H-mode with blob

NSTX Shot # 108587, 100 kHz, 1000 kA, 4.5 kG, He

NSTX Shot # 108466, 100 kHz, 900 kA, 4.5 kG, He

for more examples see http://w3.pppl.gov/~szweben/psi/