Evidence of Parametric Decay during HHFW Heating on NSTX

S.J. Diem NSTX Results Review September 20, 2004

XP 441 Conditions

- Plateau P_{HHFW} was varied between 0.4-2 MW
- Helium and deuterium plasmas with phase 14 or 7 m⁻¹
- Quantities calculated at t = 0.4 s

Unexpected Behavior has been Observed during HHFW Heating

• Edge rotation and impurity heating has been observed

Edge Temperature vs. HHFW Power

400 350 Ions Electrons Edge 100 50 0 0.5 1.5 2 2.5 0 1 **HHFW Power [MW]**

• One possible explanation is parametric decay

Parametric Decay Theory

- Nonlinear three wave coupling process with selection rules:
 - Conservation of Energy

Conservation of Momentum

$$k_0 = k_1 + k_2 \twoheadrightarrow k_1 = -k_2$$

• Energy is deposited within 10 cm of the plasma edge

Evidence of Parametric Decay

- A Langmuir probe has been installed on NSTX to look for evidence of parametric decay
- The ICQM cannot be detected because of equipment limitations
- Look for characteristic IBW peaks:

$$f = f_0 - n\Omega_i$$
IBW
HHFW
Harmon

Harmonics of Ω_i for He or D

Characteristic Peaks Observed

- Both upper and lower sidebands were observed
- As the power was increased, more sidebands were visible
 <u>Deuterium Plasmas:</u>
- $+\Omega_{\iota}$ seen for $P_{HHFW} > 1 MW$

Helium Plasmas:

<u>14 m⁻¹</u>

- •-2 Ω_i visible for P_{HHFW} >0.65 MW
- •-3 Ω_i visible for $P_{HHFW} > 1.3 \text{ MW}$

<u>7 m⁻¹</u>

•No n=3 peak

Estimate of Parasitic Power Going into Edge Ions

- Cannot measure power from Langmuir probe
- Estimate amount of power needed if collisional heating was the process
 - This gives a lower bound

$$Q_i = \frac{3m_e}{m_i} \frac{nk}{\tau_e} (T_e - T_i) \text{ where: } \tau_e = \frac{3\sqrt{m_e} (kT_e)^{\frac{3}{2}}}{4\sqrt{2\pi}n\lambda e^4}$$

• Collisional ion heating increases with P_{HHFW}

Conclusions

- HHFW is expected to heat core electrons
- New observations show edge ion heating during HHFW operation
- Theory states that the HHFW should parametrically decay into an ICQM & IBW
- Evidence of parametric decay seen in NSTX He and D plasmas IBW has been detected
- An increase in power yields more IBW sidebands
- Estimated power going into ions increases with P_{HHFW} increase

Ion Heating in Edge Observed

• Stored energy in ions increases P_{HHFW}

Ion Temperature with Phase Information

Edge Temperature vs HHFW Power

