Status of CURRAY Integration into TRANSP and HHFW H&CD Modeling

T.K. Mau UC-San Diego

NSTX Results Review September 20-21, 2004

Princeton Plasma Physics Laboratory Princeton, NJ

Two Tasks in Support of HHFW Campaign

- Integrate CURRAY into the TRANSP transport analysis code
 - Heating
 - Current drive with non-zero E_{dc}
- Compare and benchmark CURRAY results with other codes and experiments, and improve on physics model
 - Heating
 - Current Drive
 - Interaction with energetic beam ions

CURRAY has been integrated into **TRANSP**

- CURRAY has been incorporated as a subroutine in TRANSP. [Indireshkumar]
 - Wave parameters are part of input to TRANSP
 - CURRAY reads EQDSK and TRXPL.OUT files from TRANSP
 - Returns calculated HHFW power deposition and driven current profiles to TRANSP
 - Energetic beam ions from TRANSP are treated as Maxwellian species
- Debugging of CURRAY/TRANSP runs is facilitated by generating the needed input files (EQDSK, wave and plasma input) for stand-alone CURRAY execution.
- CURRAY/TRANSP has been used in analyzing HHFW heated H-mode discharges and NBI discharges. [LeBlanc]
- During test phase with TRANSP, the ray marching routine in CURRAY has been further improved to obtain drastic reduction of incidences of ray "crashing" during time-dependent runs.

Typical Deposition Profiles of a HHFW/NBI Discharges from CURRAY/TRANSP

- The D plasma contains minority H and slowing-down D beam ions.
- Power absorption fractions:
 - $P_e = 0.5$ $P_H = 0.21$ $P_D = 0.01$ $P_B = 0.28$

HHFW CD Modeling with CURRAY/TRANSP Needs Further Work

- Work is ongoing to complete incorporation of the current drive package into TRANSP.
 - Need to evaluate $j_{rf}(E_{dc})$ and $\partial j_{rf} / \partial E_{dc}$ for modeling transients during rf turn-on, to avoid numerical problems (Ignat).
 - Original plan is to calculate a table of j/p ($\epsilon, \theta, w, E_{dc}$), by incorporating features of an existing adjoint code (Karney & Fisch) with nonzero E_{dc} without toroidal trapping effects into the present CURRAY model (zero E_{dc} with trapping).

This is found to be more time-consuming than present resources allow.

- Since $w=v_{res}/v_{te} \sim 1.6$ for fast waves, Ignat's analytic expression of $j_{rf}(E_{dc})$ for LH waves is questionable as it assumes $v_{res}/v_{te} \gg 1$.
- We now propose to use the CQL3D kinetic code combined with either CURRAY or GENRAY to carry out the calculations.
 - CQL3D has an existing capability to solve the rf quasilinear diffusion equation with a non-zero E_{dc} .
 - Will decide if generating a suitably limited look-up table for j/p $(\epsilon, \theta, w, E_{dc})$, or direct evaluation, is the best approach.

Reasonable Agreement between CURRAY and AORSA for Case with Thermal Ions Only, Shot 108901

Reasonable Agreement between HPRT, CURRAY, AORSA, and GENRAY/CQL3D for $N_{\phi} = 24$, for NBI plasma (Shot 108251)

Comparison of CURRAY CD Results with AORSA and Experiments Warrants Further Investigation

- cold polarization : Use k_{\perp} from ray tracing in evaluating K_{ii} 's.
- hot polarization : Use complex k_{\perp} from order reduction to evaluate K_{ij} 's.

Summary and Future Work

- CURRAY has been run successfully with TRANSP for HHFW heating scenarios. Work is ongoing to incorporate a CD model including a DC electric field for modeling ramp-up. The use of CQL3D with CURRAY or GENRAY is being considered.
- Relatively good agreement in HHFW heating results between CURRAY and other codes has been obtained, particularly at higher N_{ϕ} . Investigation of physics model at lower N_{ϕ} is warranted.
- The CURRAY CD model is being re-examined to try to explain its difference with AORSA and the experimental results.
 - An extended experimental data base at higher density (> $2x10^{13}$ cm⁻³) and temperature (> 2 keV) will be highly desirable.
 - A more detailed comparison with AORSA is also warranted.
 - Detailed benchmarking with CQL3D/GENRAY is being carried out.

