

Status of Error Field Determination on NSTX

J. Menard, T. Biewer, R. Feder (PPPL) C. Tcheyan (NYU-NUF)

NSTX Results Review for FY2004 Run

Princeton Plasma Physics Laboratory Princeton, NJ September 20-21, 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL **PPPL PSI SNL UC Davis UC** Irvine **UCLA** UCSD **U** Marvland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich** IPP, Garching **U** Quebec

RWM sensor calibration dominated by PF5 "pickup"

This pickup is subtracted from difference signals to give null vacuum response

Is this a sensor gain/alignment problem, or a real error field?

B_R sensors used to diagnose fields from coils

- B_P sensors subject to larger n*A and orientation variation
- 4 outer coordinates of each B_R sensor tile corner measured with FARO during last outage
 - Middle 2 points inferred from plate drawings and plane angles
 - Project along normal into tiles for 6 vertices of sensor winding
 - Constructed 3D filament model of sensor winding for each sensor for Biot-Savart calculations

Filament model of sensors and PF coils

- Allow X,Y shift of coil center + *n*=2-3 elliptical deformation
 - -n > 3 also tried only PF5 is close enough to B_R sensors to possibly trust the results.
 - Only shift allowed for PF2
- Mean R of coils constrained to match measured values
- No Z-variation of coils allowed
 - Coils assumed to all be co-planar based on how supports on vessel were originally machined

Absolute calibration of B_R sensors good to < 0.3%

Plates and coils appear shifted in +Y direction

Uses relative sensor coords. from last year + updated origin

"Best-fit" AR versus toroidal angle for sensors & coils

FARO arm measurement plans:

- GOAL: Measure position and 3D shape of vessel, PP plates/sensors, and PF coils relative to true centerline of device, or CL as defined by CS tiles inside vessel
 - Needed for accurate error field calculations
 - Another point: various profile diagnostics may not be viewing where we think they are relative to the true magnetic boundary, and/or from the reconstructions....
- 1. Measure X,Y vs. toroidal angle ϕ of CS at top and bottom inside vessel, and compare to the centerline of device measured with CS out of vessel (#1 DONE)
 - This defines the position of the CS centerline and the magnetic field from OH & TF
- 2. Re-measure X,Y,Z of 6 points on PPP tiles that define each B_R sensor (DONE)
 - Eliminates any error from inferring position of middle 2 points
- Measure X,Y vs. φ of vessel wall ID on the inside of the machine at Z-positions above and below mid-plane as far from mid-plane as possible
 - Get full PF5 position using this data + external wall/coil distance measurements.
 - Plates and vessel carry current this data finds magnetic center of vessel.
- 4. Measure PF5 coil X,Y,Z directly where possible with arm inside vessel
 - Take advantage of any access through large open ports during opening