

Performance of early H-mode PF1B LSN discharges

J. Menard, D. Gates (PPPL) R. Maingi, M. Wade (ORNL)

NSTX Results Review for FY2004 Run

Princeton Plasma Physics Laboratory Princeton, NJ September 20-21, 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI SNL** UC Davis UC Irvine **UCLA** UCSD **U** Marvland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich** IPP, Garching **U** Quebec

Goals of XPs 432 & 440

- XP 432 Long pulse development in stronglyshaped LSN plasmas
 - Increase elongation and triangularity using PF1B coil
 - Extend LSN long-pulse plasmas from FY02 to lower ${\rm B}_{\rm T}$
 - Increase plasma current in LSN shape test β limits
- XP 440 Develop Early H-mode Startup for Access to High q_{min}
 - Generate H-mode transition during I_P ramp
 - Improved confinement raises $\rm T_e$ and BS current
 - Reduces flux consumption, increases qmin
 - Delays J-profile penetration
 - Increases pulse length, allows higher current

Extend long-pulse LSN shape to higher κ & δ

Record pulse-length shots w/ small ELMs obtained in LSN in FY02

- Need to run at lower TF to extend pulse
 - $-\int I^2_{TF} dt$ limit on TF coil
 - Want to raise long-pulse β
- Lower $B_T \rightarrow \text{lower } T_e \rightarrow J$ profile relaxes faster
- Need to fix or raise q for good MHD stability
 - Raise $\kappa = 2 \rightarrow 2.4$
 - Raise $\delta = 0.4 \rightarrow 0.55$
- Use PF1B for high δ_L
 - Not used previously

Matched performance of 5kG LSN at 4.5kG

Both discharges affected by n=1 rotating mode that locks near t=700-800ms

PF1B LSN + I_P pause + early $P_{NBI} \rightarrow$ early H-mode

• H-mode triggered @ t=80-90ms by P_{NBI} = 2-4MW

Broader pressure profile stable (ideally) to increased P_{NBI}

Discharge sensitive to dl_P/dt after H-mode transition

Early H-mode extended pulse-length 30% in 1 day

Extended early H-mode to $I_P = 1.2MA$, 0.5s flat top

High elongation & β achieved in LSN

Many LSN shots with κ above 2.4

Many shots with κ above 30%

PF1B LSN shape used as high- β target

- Achieved long 1.2MA pulses with peak β_T ≤ 40% in TF ramp shots (34% TRANSP)
 - Highest β "validated"
 against kinetics thus far
- Improved resolution (in R, t) charge exchange diagnostic
- Magnetics and SXR show 1/1 mode onset causes β roll-over

High f_{BS} (likely) achieved at higher β_T

Flat-top duration doubled for $I_P \ge 0.9MA$

Summary of results from XPs 432 & 440

- Development of strongly shaped LSN successful
- Early H-mode opened up new operating space
 - Record pulse-lengths obtained at high current \geq 1MA
 - Long-live MHD activity may be degrading confinement
- All shapes achieved high β_T at higher β_P
 - Higher elongation key
 - Likely higher f_{BS} (need to look at kinetic data)