

Supported by

Solenoid-free inductive startup with HHFW pre-ionization

J. Menard, M. Ono (PPPL) W. Choe (KAIST) Y. Takase (U Tokyo) O. Mitarai (Kyushu Tokai U)

NSTX Results Review for FY2004 Run

Princeton Plasma Physics Laboratory Princeton, NJ September 20-21, 2004

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI SNL UC Davis UC** Irvine **UCLA** UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP, Jülich** IPP, Garching **U** Quebec

Solenoid-free tokamak formation in NSTX

- Pre-ionize plasma near RF antenna with ECH + 400kW HHFW, n_{D2} = 1-2×10⁻⁵ Torr
- 2. Create high-quality fieldnull with 5-15 loop-volts at antenna - So far, *require* \square $E_{\phi}B_{\phi}/B_{P} > 0.1kV/m$ over substantial plasma volume_
- 3. Have created 20kA plasmas that terminate near center-stack

Successful initiation thus far requires a large null region

Successful initiation: OH:112152, 4.5 kG XP433-I: 113612, 3.5 kG XP433-II:114405, 3 kG

Unsuccessful initiation: XP431: H:11293, 4.5 kG XP448-I: 113609, 3.5 kG XP448-II:114484, 3 kG

Coil current waveforms used in XP-443

Field and voltage at plasma breakdown

Field and voltage near max. plasma current

STX

Camera images and reconstructions show plasmas are born on LFS and have an inward radial trajectory

 LRDFIT code used for reconstructions

- I_{Vessel} \approx 10 \times I_P

- Careful control of B_Z after breakdown helped raise I_P from 10kA to 20kA
- More B_Z evolution optimization possible

Thomson measurements consistent with plasma motion and peaked p_e profiles

Thomson T_e < 35eV and camera images consistent with lack of burn-through → need more plasma heating power:

- More HHFW power during breakdown
- Higher V_{LOOP} keep plasma outboard
- EBW power could be very helpful

Overview of XP448 (M. Ono & W. Choe) Solenoid-free current-start-up scenario including PF4

- Try to store more poloidal flux at null region for I_P ramp
- Start PF2 & 3 coils with large positive bias
 - Balanced by negative PF4
 - Store 50-100mWb at null
 - Null size 1/3 of XP448
- Null formation very sensitive to coil current time-history and vessel current model

LRDIAG simulations predict vertical merging of X-points

STX

Shot 113608

Camera Gain = 95

s113609 (Hiroshima fast camera)

s113609 (Hiroshima fast camera)

Magnetics bound I_P to < 15kA (probably only few kA)

Outboard B-probes in near-field of PF4

Summary of Results

- HHFW pre-ionization necessary
 - Need sufficient neutral density, 0-0 phasing
 - Increase from 0.5MW to > 1MW w/ more straps
 - EBW could be very helpful (was on TST-2)
- Large null required for I_P initiation thus far
 Need more work on finding optimal balance of
 - stored flux vs. null size vs. initial plasma shape
- Good plasma position evolution following breakdown crucial to high I_P
 - DINA modeling should be helpful here
 - See talk by M. Walker on Tuesday