

Diffice of Fusion Energy betences

NSTX Results Summary: RWM XPs+

S. A. Sabbagh*

for the

NSTX Research Team

*Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA

NSTX Results Review

September 20 - 21, 2004 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokvo **JAERI** loffe Inst TRINITI **KBSI KAIST** ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching **U** Quebec

Significant progress in high β_N wall stabilization research

Physics

- Resistive wall mode (RWM)
 - Experiments examine unstable, resonant, and stable high β_N regimes
 - New/upgraded diagnostic capabilities to examine mode physics
 - Rotating RWM observed useful in rotation damping physics study
- Resonant field amplification
 - from stable RWM using initial RWM active coil pair
- Transient q profile modification
 - I_p ramp-down to increase I_i , β_N ; B_t ramp-down yielded high β_T , ω_{ϕ}/ω_A

Performance

- □ World record β_N = 7; device record β_p = 2.0
- Device record core toroidal rotation $\omega_{\phi}/\omega_{A} = 0.48$
 - Significant equilibrium modification due to rotation

...This presentation is an initial summary – more to come!

CY 2004 XP package supported RWM study

(P) In progress (C): Completed

• RWM XPs

- XP452: RWM physics using initial GMS coil (Sabbagh)
- XP407: Passive stabilization physics of the RWM (Sabbagh)
- XP453: DIII-D/NSTX RWM physics similarity XP (Sontag)
- XP428: Dissipation and inertial effects on RWM stability (Sontag)
- Supporting XPs
 - **The Second Sec**
 - □ XP414: Aspect ratio effects near the high β_p equilibrium limit (Sabbagh)
 - □ Important data from several other XPs (e.g. high β_t runs)

...Substantial XP/theory comparsion driven by significant new diagnostic coverage and upgrades

Theory provides framework for wall stabilization study

- RWM / external kink "branches" are eigenmodes of the system
- Examine stable/unstable operating regimes and resonances
 NSTX

Unstable RWM dynamics follow theory

F-A theory / XP show

- mode unlock/ rotation can occur during mode growth
- "RWM branch" phase velocity in direction of plasma flow
- growth rate, rotation frequency ~ $1/\tau_{wall}$
- n=1-3 unstable modes observed on new sensors
 - modes are ideal nowall unstable (DCON) at high β_N
- Low frequency tearing modes absent

- Core rotation damping when 1/1 mode onsets
 - leads to "rigid rotor" plasma core
- Clear momentum transfer across rational surface near R = 1.3m
- Global rotation damping by RWM
 1/1 tearing mode is absent
- Edge rotation does not halt
 - consistent with neoclassical toroidal viscosity ~ δB²*Ti^{0.5}
 - analysis shown by W. Zhu

Resonance with AC error field possibly identified

$$\frac{\text{Modified resonance}}{(S_* \nu_* / (1 + md) + 1)\hat{\omega}_f^2 +} \\ \left(s(1 - md) + \Omega_{\phi}^2 \right) = 0$$

"static error field" response

<u>New resonance</u> $\hat{\omega}_f^2 = v_* (1 + md) / 2S_*$

Theory / XP show

- Time-dependent error field yields new resonance
 - may be responsible for mode trigger
- Mode rotates <u>counter</u> to plasma rotation – F-A theory shows as "kink branch"
 - n=1 phase velocity not constant due to error field
- □ Rough calculation of $\omega/2\pi \sim 350$ Hz; agrees with PF coil ripple
- Initial results quantitative comparison continues

XP452: RWM coil pair yields first active RFA XP

- Resonant field amplification (RFA)
 - Pulsed, n=1 standing wave perturbation
 - \square RFA increases with increasing β_N
- Initial MHD spectroscopy
 - 20 60Hz modulation performed
 - Ripple from RWM coil circuit ~ 150 Hz range extra analysis required
- DIII-D/NSTX RWM experiment attempted (XP453)
 - **Q** XP delayed due to $B_t = 3 \text{ kG}$ limitation
 - Couldn't eliminate large n=1 tearing mode in DIII-D shape at B_t = 3 kG

Resonant field amplification increases at high β_N

Fitzpatrick-Aydemir stability curves

- Increase in RFA with increasing β_N consistent with DIII-D
 - DIII-D RFA: 0-3.4 G/kA-turn
 - thought to be *inconsistent* with F-A RWM theory (A. Garofalo, PoP 2003)
- AC error field ~ $\cos(\omega_f t)$
 - significantly shifts the error field resonance <u>away</u> from stability boundary
 - finite ω_f^2 resonances might fill amplification "gap" between modified error field resonance and stability limit
 - consequently, must be careful to include the effect of active error field resonances in RFA calculations

Two-toroidal position USXR: RWM not edge localized

XP414: Progress toward the ST equilibrium limit

- XP to examine rotation effects at low aspect ratio, high β_p
 Early run (before vent for CHERS): calibrated CHERS not available
 Late run: restricted to B_t = 3kG, limiting peak plasma performance
- High β_p target conditions established
 CHERS data taken indicates high rotation targets, f_φ ~ 30 kHz
 Plasma β_p up to 2, world record β_N = 7, W_{tot} = 200 kJ
- Target development significantly improved mode behavior
 - □ Neutron collapse at β_N = 7 plasma indicates internal/global mode
 - Subsequently, beta collapses not correlated with neutron collapses
 - □ Last run (B_t = 3kG) showed that modes could be <u>eliminated</u> by maintaining $\kappa > 2$ during I_p ramp-down
- XP completion desired when B_t > 4 kG becomes available

Between-shots equilibrium reconstruction with rotation introduced in 2004 (EFIT)*

- □ 51 radial channel, Δt =10ms CHERS data generated between-shots
 - Dynamic (rotational) pressure $P_d(\psi,R)|_{z=0}$
 - P_i available reduces error bars on "partial kinetic" $P(\psi,R)|_{z=0}$
- □ Significant upgrade of divertor magnetics set / vessel voltage monitors
 - Reduces uncertainty in X-point position and plate currents
- Over 350 total measurements are used per time point
 - Allows fit with 21 free basis function parameters and <u>no</u> artificial constraints
 - Over 11,000 shot*times run further testing still needed for 100% reliability
- □ First shot with MSE data now being tested
- Physics constraints
 - Flux iso-surface constraint
 - Use T_e = T_e(ψ(R)|_{z=0}) <u>directly</u> from Thomson scattering data rapid analysis
 required to insure self-consistent solution with toroidal rotation
 - Better flux surface / q profile determination
 - Other data (e.g. soft X-ray emission) can be used as constraint

*in collaboration with Lang Lao (GA), Z. Cheng (IPPCAS)

Significant separation of magnetic axis and peak pressure

Wall stabilization physics understanding improved by use of upgraded capabilities

- Unstable, resonant, and rotationally stabilized plasmas have been created and global modes diagnosed
- Greater insight on RWM physics critically aided by diagnostic upgrades
 - □ new internal RWM sensor array n=1-3 modes measured
 - \Box higher time and spatial resolution CHERS for T_i, Ω_{ϕ} (rotation damping)
 - <u>key diagnostic</u>, but issue with lack of carbon signal in many plasmas
 - two-toroidal position USXR data shows RWM not limited to plasma edge
- Initial RWM coil pair already used for first RFA experiments
- Equilibrium reconstruction with rotation now available

...analysis of CY2004 data has just begun!

