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Significant progress in high βN wall stabilization research
• Physics

Resistive wall mode (RWM)
• Experiments examine unstable, resonant, and stable high βN regimes
• New/upgraded diagnostic capabilities to examine mode physics
• Rotating RWM observed - useful in rotation damping physics study

Resonant field amplification
• from stable RWM using initial RWM active coil pair

Transient q profile modification
• Ip ramp-down to increase li, βN; Bt ramp-down yielded high βT, ωφ/ωA

• Performance
World record βN = 7; device record βp = 2.0
Device record core toroidal rotation ωφ/ωA = 0.48
• Significant equilibrium modification due to rotation

…This presentation is an initial summary – more to come!
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CY 2004 XP package supported RWM study

• RWM XPs
XP452: RWM physics using initial GMS coil (Sabbagh)
XP407: Passive stabilization physics of the RWM (Sabbagh)
XP453: DIII-D/NSTX RWM physics similarity XP (Sontag)
XP428: Dissipation and inertial effects on RWM stability (Sontag)

• Supporting XPs
XP408: Rotation damping physics in high βN ST plasmas (Zhu)
XP414: Aspect ratio effects near the high βp equilibrium limit 
(Sabbagh)
Important data from several other XPs (e.g. high βt runs)

(P) In progress
(C): Completed

…Substantial XP/theory comparsion driven by significant new
diagnostic coverage and upgrades
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Theory provides framework for wall stabilization study

• RWM / external kink “branches” are eigenmodes of the system

• Examine stable/unstable operating regimes and resonances

Fitzpatrick – Aydemir (F-A) RWM dispersion relation
Nucl. Fus. 36 (1996) 11
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Unstable RWM dynamics follow theory

• F-A theory / XP show
mode unlock/ rotation 
can occur during 
mode growth
“RWM branch” phase 
velocity in direction of 
plasma flow
growth rate, rotation 
frequency ~ 1/τwall

• n=1-3 unstable modes 
observed on new 
sensors

modes are ideal no-
wall unstable (DCON) 
at high βN

• Low frequency tearing 
modes absent
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RWM rotation damping differs from other modes

• Core rotation damping when 1/1 
mode onsets

leads to “rigid rotor” plasma core

• Clear momentum transfer across 
rational surface near R = 1.3m

• Global rotation damping by RWM
1/1 tearing mode is absent

• Edge rotation does not halt
consistent with neoclassical 
toroidal viscosity ~ δB2*Ti0.5

analysis shown by W. Zhu
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• Theory / XP show
Time-dependent error field yields 
new resonance

• may be responsible for mode 
trigger

Mode rotates counter to plasma 
rotation – F-A theory shows as 
“kink branch”

• n=1 phase velocity not constant 
due to error field

Rough calculation of ωf/2π ~ 350 
Hz; agrees with PF coil ripple
Initial results – quantitative 
comparison continues

Resonance with AC error field possibly identified
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Modified resonance

New resonance
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XP452: RWM coil pair yields first active RFA XP 

• Resonant field amplification (RFA)
Pulsed, n=1 standing wave perturbation
RFA increases with increasing βN

• Initial MHD spectroscopy
20 – 60Hz modulation performed
• Ripple from RWM coil circuit ~ 150 Hz range – extra analysis required

• DIII-D/NSTX RWM experiment attempted (XP453)
XP delayed due to Bt = 3 kG limitation
• Couldn’t eliminate large n=1 tearing mode in DIII-D shape at Bt = 3 kG
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Resonant field amplification increases at high βN

• Increase in RFA with increasing 
βN consistent with DIII-D

DIII-D RFA: 0-3.4 G/kA-turn
thought to be inconsistent with 
F-A RWM theory (A. Garofalo, 
PoP 2003)

• AC error field ~ cos(ωf t)
significantly shifts the error field 
resonance away from stability 
boundary
finite ωf

2 resonances might fill 
amplification “gap” between 
modified error field resonance 
and stability limit
consequently, must be careful 
to include the effect of active 
error field resonances in RFA 
calculations
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Chord 3

Chord 4

Chord 5

Bay G array
Bay J array
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Two-toroidal position USXR: RWM not edge localized

K. Tritz, JHU
• Theory (DCON) 

shows global mode
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XP414: Progress toward the ST equilibrium limit

• XP to examine rotation effects at low aspect ratio, high βp
Early run (before vent for CHERS): calibrated CHERS not available
Late run: restricted to Bt = 3kG, limiting peak plasma performance

• High βp target conditions established
CHERS data taken indicates high rotation targets, fφ ~ 30 kHz
Plasma βp up to 2, world record βN = 7, Wtot = 200 kJ

• Target development significantly improved mode behavior 
Neutron collapse at βN = 7 plasma indicates internal/global mode
Subsequently, beta collapses not correlated with neutron collapses
Last run (Bt = 3kG) showed that modes could be eliminated by 
maintaining κ > 2 during Ip ramp-down

• XP completion desired when Bt > 4 kG becomes available
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Between-shots equilibrium reconstruction with rotation 
introduced in 2004 (EFIT)*• Data

51 radial channel, ∆t =10ms CHERS data generated between-shots
• Dynamic (rotational) pressure Pd(ψ,R)|z=0

• Pi available – reduces error bars on “partial kinetic” P(ψ,R)|z=0

Significant upgrade of divertor magnetics set / vessel voltage monitors
• Reduces uncertainty in X-point position and plate currents

Over 350 total measurements are used per time point
• Allows fit with 21 free basis function parameters and no artificial constraints
• Over 11,000 shot*times run – further testing still needed for 100% reliability

First shot with MSE data now being tested

• Physics constraints
Flux iso-surface constraint

• Use Te = Te(ψ(R)|z=0) directly from Thomson scattering data - rapid analysis
required to insure self-consistent solution with toroidal rotation

• Better flux surface / q profile determination
• Other data (e.g. soft X-ray emission) can be used as constraint

*in collaboration with Lang Lao (GA), Z. Cheng (IPPCAS) 
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Significant separation of magnetic axis and peak pressure

• Vφ broadens P profile
simple estimate for Pfast

completing testing of 
diagnostic consistency

• (Rpmax– Raxis)/a = 11%
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Wall stabilization physics understanding improved by 
use of upgraded capabilities

• Unstable, resonant, and rotationally stabilized plasmas have been 
created and global modes diagnosed

• Greater insight on RWM physics critically aided by diagnostic upgrades
new internal RWM sensor array – n=1-3 modes measured

higher time and spatial resolution CHERS for Ti, Ωφ (rotation damping)
• key diagnostic, but issue with lack of carbon signal in many plasmas

two-toroidal position USXR data shows RWM not limited to plasma edge

• Initial RWM coil pair already used for first RFA experiments
RFA increases as βN increases

• Equilibrium reconstruction with rotation now available

…analysis of CY2004 data has just begun!


