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MAGNETIC HELICITY

Magnetic helicity K is a measure of the flux linkage of a magnetic field B.

Moffatt’s example of magnetic helicity … linked flux loops:

Linkage of a vector field is a
global topological property.
   Must integrate over all field-containing space.

   Local or differential magnetic helicity appears to
   have no logically justified physical interpretation.

One usually is interested in only a limited region of space.

Region of interest is usually linked by and/or connected with
outside fluxes. Becomes gauge dependent, nonphysical.

What to do?

      

€ 

K ≡ 2Φ1Φ2 = A ⋅B
V=V1 +V2

∫ d3x,    d3x = Φ

B
dl
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Let Bref = B outside of the volume
V = Vα of interest; i.e., throughout Vβ.

Then, because the field geometries of
Bref and B outside V are equal, the
Relative Helicity

is the difference of their linkage in the
volume of interest Vα.

RELATIVE Helicity Has Physical Meaning

Following Berger & Field, J. Fluid Mech. 147 (1984) 133,  Relative Helicity Krel is the difference
between the helicities of two fields each existing in principle in all of space: the physical
field B and a chosen reference field Bref.

    

€ 

Krel = A ⋅Bd3x −
V∞
∫ Aref ⋅Bref d3x

V∞
∫

B = ∇× A,      Bref = ∇× Aref
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 Berger-Field did not extend their ideas to toroidally connected volumes, and some of their proofs
were restricted to ∇ x B = 0 and/or to the Coulomb gauge, ∇•A = 0, and to fixed boundary.
 Many authors follow Bevir-Gray and add a simple external flux linkage term, but then the toroidal surface

must be a magnetic surface.
 Alternatively, the torus is cut, yielding a simply connected volume with a cut condition.
 Extension of Berger-Field requires either restriction on gauge or extra terms, e.g. Finn & Antonsen

Comments Plas. Phys. Controlled Fusion 9 (1985) 111.
 Moving boundary can change (a) linkage within V(t) and (b) connection to outside.

 Boozer Phys. Fl. 29 (1986) 4123, Phys. Fl. B 5 (1993) 2271, treated moving and deforming, toroidally and
simply connected boundaries, but not with a relative helicity.

 Moses, Gerwin, Schoenberg, Phys. Plas. 8 (2001) 4839, give a simple helicity, easy to apply, but
requires cut for torus, and they did only fixed boundary case.

 Need to formulate a physically meaningful, mathematically rigorous magnetic helicity and rules for
its use, for at least

toroidally and/or simply connected,
arbitrarily penetrated,

moving boundary

How to Define and Use Relative Helicity
Has Not Been Made Totally Clear
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RELATIVE MAGNETIC HELICITY FOR
SIMPLY AND TOROIDALLY CONNECTED VOLUMES

Begin with BF relative helicity over all space, V∞ = Vα + Vβ, with Bref = B throughout Vβ:

    

€ 

Krel = A ⋅Bd3x −
V∞
∫ Aref ⋅Bref d3x

V∞
∫

= A ⋅B− Aref ⋅Bref( )d3x +
Vα=V
∫ A− Aref( ) ⋅Bd3x

Vβ
∫

    

€ 

Krel = A ⋅B− Aref ⋅Bref( )d3x −
V
∫ fβB ⋅nd2x

S
∫

Since Bref = B in Vβ, let A – Aref = ∇fβ in Vβ, with fβ globally well-defined, single-valued in Vβ.

Require that all sources be within V∞ so B does not contribute to integrals at ∞.

Let S be the closed surface that encloses V and n its outward unit normal vector. Then,

The surface integral is commonly overlooked or else eliminated by restrictive choice(s).

This Krel is gauge independent, but last integral over outside of surface is inconvenient.
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Continuity of normal B and of tangential A means no flux sheet hidden in S.
∇g is any globally well-defined gauge function. Its continuity means no charge
      double layer (e.g., a plasma sheath) hidden in S.

And then   ∇fα × n = ∇fβ × n  across S.

Because of continuity we can drop subscripts α and β on S.

Expression for Relative Helicity still looks the same,

except now  f must satisfy  ⇒  ∇f × n = (A – Aref) × n   on S.
[Remember to add g – gref + (any constant) to f if gauge(s) changed.]

RELATIVE MAGNETIC HELICITY
Add Some Physics

  

€ 

K rel = A ⋅B − A ref ⋅Bref( )d3 x −
V
∫ f B ⋅ nd2 x

S
∫

Actual field B and reference field Bref must both be physically realizable in V∞, including
across surface S.

Then, the following field components must each be separately continuous across S:

  

€ 

B ⋅ n,    A × n,    ∇g× n,    g;            Bref ⋅ n,    Aref × n,    ∇gref × n,    gref
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RELATIVE MAGNETIC HELICITY
Additional Forms

Last line is Finn & Antonsen’s Krel. Derivation is clearer here than in their 1985 paper.
     It has no surface integrals, just an integral over the volume of interest V,
     or can integrate over any volume that fully includes V, since B – Bref = 0 outside V.
The FA (last line) form is, in my experience so far, the easiest to work with, despite the
four terms in its integrand.

  

€ 

K rel = A ⋅B − A ref ⋅Bref( )d3 x −
V
∫ fB ⋅ n d2 x

S
∫

= A ⋅B − A ref ⋅Bref( )d3 x +
V
∫ A × A ref ⋅ n d2 x

S
∫

= A + A ref( ) ⋅ B − Bref( )d3 x
V
∫

Krel is independent of gauges ∇g and ∇gref added to A and Aref  and depends only on
quantities in V and on S, i.e., the region of interest.

Under the same conditions, Krel can be written in other forms:
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Decompose B into “CLOSED” and “OPEN” Components

  Definitions of open and closed…
Let B = Bcl + Bop   and  Bref = Bref,cl + Bref,op       with  ∇⋅Bcl  = ∇⋅Bop  =  ∇⋅Bref,cl  = ∇⋅Bref,op  = 0.

Require closed components to satisfy Bcl⋅n   = Bref,cl⋅n     =  0  on S

Require open    components to satisfy Bop⋅n  = Bref,op⋅n   ≠  0  on S
Also let there be corresponding vector potentials such that

Bcl = ∇ × Acl       Bop = ∇ × Aop
Bref,cl = ∇ × Aref,cl  Bref,op = ∇ × Aref,op

Closed B is fully contained within V and does not penetrate S; S is a magnetic surface of Bcl .
Open B penetrates S and connects with the outside.
This decomposition is not unique.

  Then,

    

€ 

Krel = Acl ⋅Bcl + Aop ⋅Bop + Acl ⋅Bop + Aop ⋅Bcl( )d3x
V
∫

− Aref,cl ⋅Bref,cl + Aref,op ⋅Bref,op + Aref,cl ⋅Bref,op + Aref,op ⋅Bref,cl( )d3x
V
∫

− fcl Bcl + fop Bop + fcl Bop + fop Bcl( ) ⋅nd2x
S
∫

(BF form shown; similarly for other forms)
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… and Simplify It …

The Krel expressions with open-closed decomposition simplify greatly if we require that

Bop = Bref,op    everywhere in V.

This choice also makes the decomposition unique.   Many terms cancel.

All forms of Krel simplify to the same forms, which are equivalent:

  

€ 

K rel = A cl ⋅B cl − A ref,c l ⋅Bref,c l + 2 B cl − Bref,c l( ) ⋅ A op[ ] d3 x
V
∫

= A cl ⋅B cl − A ref,c l ⋅Bref,c l + 2 A cl − A ref,c l( ) ⋅B op[ ] d3 x
V
∫

= A cl + A ref,c l( ) ⋅ B cl − Bref,c l( ) + 2 B cl − Bref,c l( ) ⋅ A op[ ] d3 x
V
∫

= A + A ref( ) ⋅ B cl − Bref,c l( )[ ] d3 x
V
∫      etc.

Interpretation:

Relative helicity in toroidally and simply connected volumes can be reduced to the relative
helicity of just a closed field component, plus (if S is penetrated by B) a cross linkage between
closed and open field components.
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Special Case Yields Further Simplification

So far we have neither restricted gauges nor chosen Bref.

Now consider the special case where:
• Bop is current-free (a common choice):

• Then let Bop = Bref,op = ∇χ in V, where χ is a well-defined scalar potential in V.

• “Vacuum” B has lowest energy in V with given boundary conditions.

• Aop and Aref,op gauges chosen so that each has the same “electric charge”:
• Then  ∇•(Aop – Aref,op) = 0  in V  and (Aop – Aref,op)•n = 0  on S.

Then, Krel simplifies to depend only on closed-field components,

Even more special, ∇•A = 0 in V and A•n = 0 on S for all components is allowed.
• Moses et al. Gauge choice
• Then all electric charges are accounted for in ∇2φ, not in A.

    

€ 

Krel = Acl ⋅Bcl − Aref,cl ⋅Bref,cl( )d3x
V
∫
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Time Derivative of K Yields Helicity Evolution/Conservation Eqn.

Differentiate Krel with respect to time (less algebra with FA form):

  

€ 

dKrel
d t

= ∂
∂t

A + A ref( ) ⋅ B − Bref( )[ ] d3 x +
V t( )
∫ A + A ref( ) ⋅ B − Bref( ) U ⋅ n( )d2 x

S t( )
∫

Here U(x,t) is the local normal component of the velocity of S(t) at x.  x is the coordinate
vector in a “fixed” frame. Let prime (’) denote a value measured at point x in an inertial
frame moving with the instantaneous local U(x,t).

Using E = –∂A/∂t – ∇φ , where φ is a scalar electric potential, and E’ = E + U×B, yields

  

€ 

dKrel
d t

= −2 E ⋅B − Eref ⋅Bref( ) d3 x −
V t( )
∫ ′ E − ′ E ref( ) × A + A ref( ) ⋅ n d2 x

S t( )
∫

However, (E’ – E’ref) × n = 0 in frame moving with S(t), so the final result is just

The parallel (to B) component of E changes magnetic helicity (flux linkage).
  

€ 

dKrel
d t

= −2 E ⋅B − Eref ⋅Bref( ) d3 x
V t( )
∫
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… Add Physics …

Use Braginskii two-fluid “Ohm’s law” to express E⋅B (actual fields) as plasma physics.

Manipulate reference field Eref⋅Bref integral to show some possibilities. Then,

  

€ 

dKrel
d t

= − 2 η|| J − k
e

Te∇ ln ne
 
 
 

 
 
 

V t( )
∫ ⋅B d3 x − 2 ′ φ − 1.7 k

e
Te

 
 
 

 
 
 B

S t( )
∫ ⋅ n d2 x

      − A × ∂ ′ A 
∂t

 
 
 

 
 
 

S t( )
∫ ⋅ n d2 x − d

dt
A ref ⋅Bref d3 x

V t( )
∫

Ohm             density
                    gradient

electric       thermo
potential     electric

    Change of
surface fluxes

     Change of
Reference helicity

  

€ 

′ φ = φ −U ⋅ A ∂ ′ A 
∂t

= dA
dt

= ∂A
∂t

+ U ⋅ ∇ATransformations between fixed and moving frames

No Hall terms in helicity evolution.
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DISCUSSION

• When S(t) is a magnetic surface, helicity can be changed by: plasma resistivity,
density gradient potential; changing external flux linkages; and changing reference
field’s helicity.

• Static electric and thermoelectric potentials transport helicity across S(t) if B
penetrates the surface.

• E|| changes magnetic helicity; E⊥ convects magnetic flux.

• Need to understand better:
– How to interpret helicity evolution when reference field changes with changing geometry.

– Develop linked external fluxes contribution; should give a natural unique definition of
surface-averaged linkage when B penetrates S(t).


