XP 428: Resistive Wall Mode Dissipation Physics

A. C. Sontag

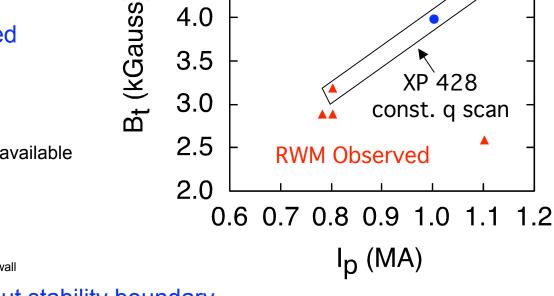
Department of Applied Physics and Applied Mathematics, Columbia University

NSTX Results Review - 9/20/04 Princeton Plasma Physics Laboratory

XP 428: Dissipation Physics of the Resistive Wall Mode

Motivation

- □ RWM stability when $\beta_N > \beta_{N \text{ no-wall}}$ is allowed through a combination of toroidal rotation and energy dissipation
- RWM energy dissipation mechanism(s) which allow stability above no-wall beta limit is (are) presently uncertain


Goals

- Examine q dependence of RWM stability boundary
 - $\omega_{\phi}/\omega_{A} > 1/4q^{2}$ observed as necessary condition in 2002 NSTX data
 - toroidal inertial enhancement limit from drift-kinetic energy principle
 - DIII-D observes $\Omega_{crit} \propto q^{\alpha} (\alpha > 0)$ dependence
- Evaluate strength of dissipation mechanisms
 - sound wave dissipation $\propto k_{||}v_{ti}\rho$
 - ion Landau damping significant if $\omega_{\phi} > \epsilon^{1/2} v_{ti}/qR$
 - numerical calculations \rightarrow MARS-F
 - analytic theory → Fitzpatrick-Aydemir model
- Determine relative importance of dissipation and inertia

Field Scan Attempts to Separate Inertia and Dissipation

- If q not fixed: inertia and dissipation terms have similar scalings
 - want to separate effects in dispersion relation
- At fixed q_{95} scan $B_t \rightarrow$ vary inertial enhancement
 - $v_{A} \sim B/n^{1/2}$
 - \Box $v_{ti} \sim T_i^{1/2} = n^{-1/2}$
 - \Box vary I_p and B_t simultaneously
- One constant q scan completed
 - B_t scan at $q_{95} \sim 5.8$
 - high rotation in targets
 - mostly stable to RWM
 - performed before active coil available
 - no rotation control
 - lowest field shot unstable
 - 1/1 mode damps rotation
 - RWM onset when $\beta_N > \beta_{N \text{ no-wall}}$

5.0

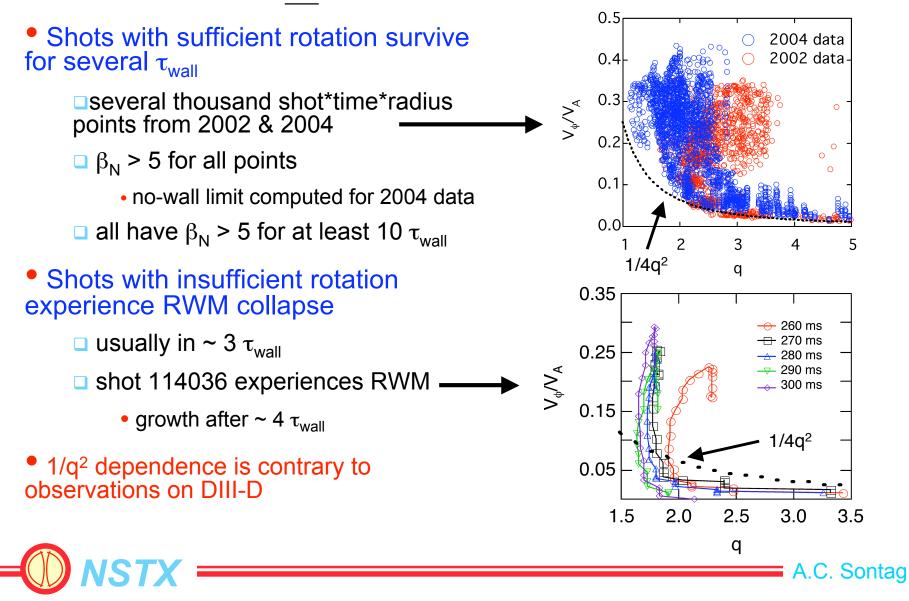
4.5

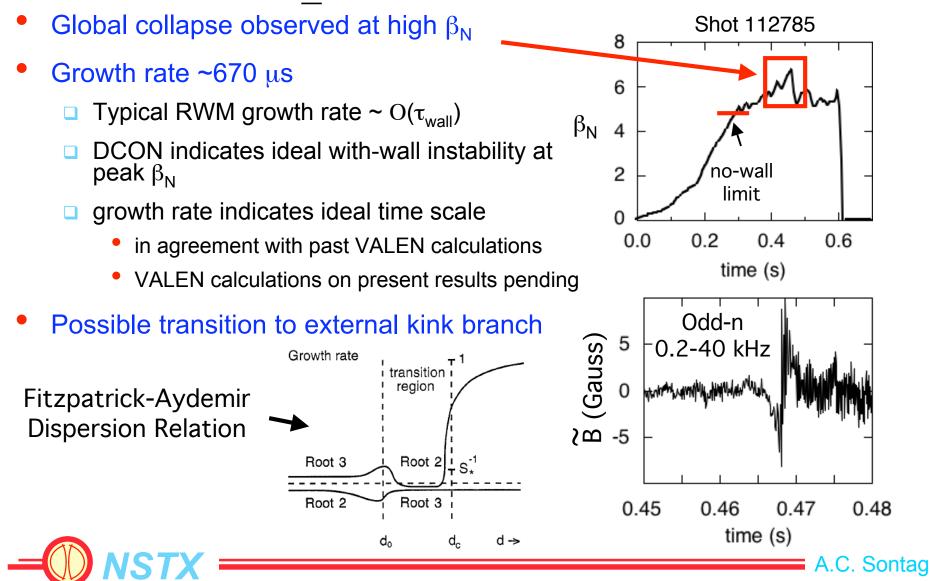
4.0

3.5

3.0

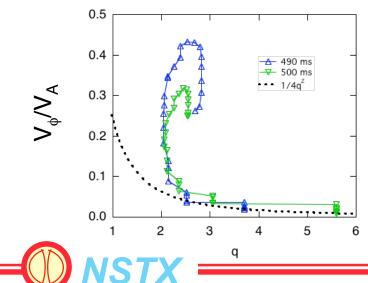
RWM Stable

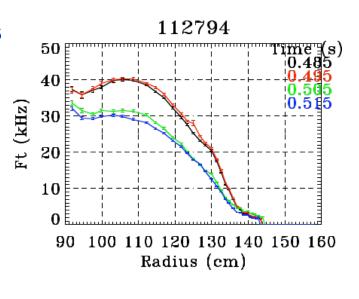

- Need more data to fully map out stability boundary
 - data from other XPs have variety of q_{95} values due to shaping variations, etc.

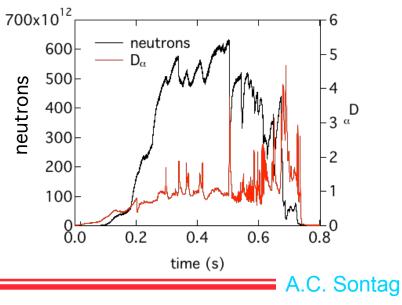

A.C. Sontag

XP 428

Inertial Enhancement Model Describes Observed $\underline{\Omega}_{crit}$ Boundary in NSTX

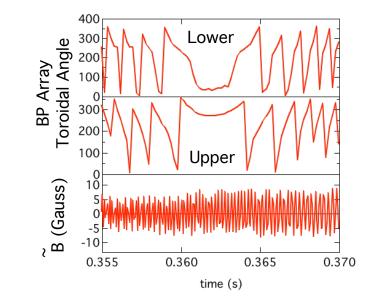


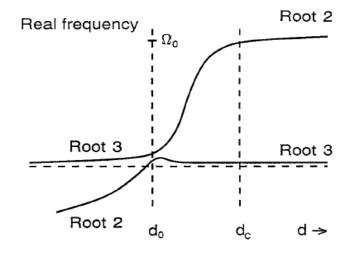

$\frac{\beta \text{ Collapses on Ideal Time Scales Occur at}}{\text{ Highest } \beta_{N} \text{ in Wall Stabilized Regime}}$



RWM Stability Restored During Fast Collapse

- Plasma remains above no-wall limit after fast collapse when with-wall limit is approached
- Rotation collapse is global
 - coincident D_a spike and neutron collapse confirm global nature of mode
- Rotation sufficient for RWM stability after collapse
 - similar to 108420 in previous run campaign


RWM/Kink Phase Velocity Reversal Observed


 112804 has low plasma rotation due to 1/1 mode when no-wall limit is exceeded

 $\square \omega_{\phi} < \Omega_{crit}$ throughout plasma

- RWM/kink appears with slow positive rotation when $\beta_N > \beta_{N \text{ no-wall}}$
 - □ ω_{RWM} ~ 1 kHz
 - □ ω_{1/1} ~ 5 kHz
 - □ ω_{edge} ~ 3 kHz
 - ⇒ $\omega_{\text{RWM}} < \omega_{\text{edge}}$ violates no-slip condition
- 1/1 mode continues high frequency rotation
- RWM/kink reverses phase
- F-A dispersion relation predicts phase reversal for external kink branch
 - theoretical calculations to determine required dissipation and other parameters for this behavior ongoing

Future Work

- Map out I_p-B_t stability space
 - □ determine if RWM stability dependent on q or B_t in NSTX
 - can discrepancy with DIII-D Ω_{crit} dependence be resolved?
 - New capabilities expand operating space
 - full TF allows wider range of q
 - active coil gives rotation control
- Continue evaluation of dissipation mechanisms
 - finish proposed scans to vary coupling to mechanisms
 numerical calculations to determine relative magnitudes
 compare with predictions of F-A analytic model
- Completion will give possibility of firm conclusions on nature of RWM dissipation mechanism

