Divertor regimes in NSTX

V. A. Soukhanovskii

Lawrence Livermore National Laboratory

NSTX Research Team

NSTX FY'04 Results Review 20-21 September 2004 Princeton, NJ

ODNSTX-

Acknowledgements

- R. Maingi, C. Bush (ORNL)
- R. Bell, T. Biewer, D. Gates, R. Kaita, H. W. Kugel,
 B. LeBlanc, S. Paul, A. L. Roquemore (PPPL)
- R. Raman (University of Washington)
- · J. Boedo (UCSD)
- S. Sabbagh (Columbia University)

This research is supported by the U.S. Department of Energy under contracts No. W-7405-Eng-48 at LLNL and DE-AC02-76CH03073 at PPPL.

Motivation and status of SOL / divertor diagnostics

- Identify divertor regimes, determine boundaries in operational space, determine rel. role of SOL parallel heat transport channels (e-i, conduction, convection)
- Develop radiative divertor regime compatible with high performance H-mode plasmas
- SOL / divertor diagnostics greatly improved in **FY'04** : IRTV, D_{α} , C III filtered cameras, neutral pressure gauges, D_{γ} filtered camera, high-resolution Balmer line spectroscopy (VIPS 2), bolometry, Langmuir probes

Status of XP 438 "Divertor regimes and divertor detachment"

- XP was delayed for months due to D_{ν} filter availability issues
- Obtained only 3.5 hours due to lack of machine run time
- Out of 9 pulses, 2 pulses had machine problems
- Plan for XP originally included D₂ and Ne injection scans in L-mode to obtain edge n_e (i.e. v^{*}_{SOL}) scan and edge P_{rad} scan. Had to settle for a crude D₂ injection scan.
- Obtained a 2 NBI source L-mode: possible if LFS gas is $\Gamma > 50$ Torr I / s and $P_{NBI} = 2 3$ MW
- LDGIS proved to be too fast and disruptive for a systematic scan
- Inner divertor detachment threshold in $\langle n_e \rangle$, P_{in} is low
- Have not been able to detach outer divertor with $D_2 \Gamma_{LFS} < 120 \text{ T I} / \text{s}$
- Need to run a systematic experiment

Wide parameter range LSN plasma available in 2004

	112830	114114
	(PF2L)	(PF1B)
к	1.85	2.40
δ	0.47	0.74
drsep	-1.8	-1.0*
q _{edge}	13	9.5

- Only LSN divertor can be studied at present, DN divertor in FY'05 - FY'06
- PF1B coil LSN shape (comp. to PF2L):
 - has ~ 1.5 connection length beneficial for detachment
 - OSP magnetic flux expansion is ~ 10 (cf. 4)
 - inner divertor detaches at lower density
 - outer always attached

Inner divertor is cold / detached

Appearance of Stark broadened high n Balmer series lines indicate:

- Volume recombination
- Apparently high n_e , n_0 , low T_e
- Possibly optically thick

- Similar divertor behavior in L- and H-mode plasmas with $P_{NBI} < 6$ MW.
- Inner divertor is cold, often detached
- Heat flux q < 1 MW/m²
- Sign of detachment: observed volume recombination (D_{γ}/D_{α} ratio increases), P_{rad} increase

Inner divertor cold / detached in LSN plasmas

- 1 NBI src L-mode
- Inner divertor detached at $\langle n_e \rangle =$ 2.5-3 x 10¹⁹ m⁻³

Outer SOL

- Outer divertor is always attached, heat flux $q < 10 \text{ MW/m}^2$
- Langmuir probe data analysis is in progress
- Outer divertor is in sheath-limited and high-recycle regime
- Uncertainty in LCFS position undermines analysis:
 - MPTS midplane $T_e = 5 40 \text{ eV} (5 15 \text{ eV} \text{ or } 20 40 \text{ eV}?)$
 - SOL collisionality ν^* = 0.5 100 (mostly 10 60)
 - If midplane $T_e = 5 15$ eV then very weak dT_e/dx_{II} rises questions about heat flux measurements, e-i partition and the heat transport mechanism
 - Carbon radiation zone is 10 eV
- Difficult experimental issue

Divertor asymmetries

- Heat flux asymmetry always q_{out}/q_{in} > , consistent with
 - SOL area factor: $A_{out} > A_{in}$
 - Magnetic flux expansion factor (mid/div): $f_{in} > f_{out}$
- Particle flux / recycling asymmetry (from D_{α} intensity)
 - Density and power dependent
 - Complex interplay of cold dense detached plasma and diagnostic geometry effects?
 - Analysis in progress to address radiation opacity effects
 - (A. Pigarov, UCSD)

6

Analysis in progress

- Two point model
- 2D multifluid code UEDGE (UCSD, LLNL), generalized CRM and line shape code CRETIN (LL²NL)

• UEDGE guidance of exp. divertor detachment space (diffusive transport model - G. Porter (LLNL))

Summary

• Present analysis of heat and recycling fluxes in L- and H-mode plasmas suggests that the inner divertor operates in a detached state in $n_e > 2 - 3 \times 10^{19} \text{ m}^{-3}$ (0.2 < $n_e/n_G < 0.9$), $P_{in} = 2 - 6 \text{ MW LSN}$ and DN plasmas, whereas the outer divertor is always attached

- The outer divertor is in the sheath-limited and flux-limited regime
- This state is resilient to Type I and Type III ELMs
- Anxiously awaiting Langmuir probe data analysis (J. Boedo (UCSD), C. Bush (ORNL))

 Need to perform a systematic documentation experiment of divertor regimes - XP will be re-submitted to the BP ET group at the FY'05 Research Forum

2PM suggests detachment of inner divertor

$$2 n_t T_t = n_u T_u$$

$$T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{q_{||} L_c}{\kappa_0}$$

$$q_{||} = \gamma n_t T_t c_{St}$$

P. C. Stangeby, *The plasma boundary of Magnetic Fusion Devices*, IoP Publishing, Bristol & Philadelphia, 2000

UEDGE modeling of detachment space

- H-mode LSN equilibrium used
- UEDGE diffusive transport model
- Impurities included
- Outer n_e , T_e profiles matched, D α and IRTV not matched
- For guiding purposes only

