Investigation of improved electron confinement in low density L-mode discharges

Presents D. Stutman Johns Hopkins University

for

E. Synakowski, S. Kaye, R. Maingi, S. Kubota, M. Bell, R. Bell, C. Bourdelle, M. Finkenthal, K. Hill, B. LeBlanc, F. Levinton, J. Menard, M. Redi, K. Tritz

And the NSTX Team

2004 Results Review

Electron transport regimes in NSTX

- Strong electron transport except in low n_e L mode
- XP411: density (collisionality) or current profile effect ?

Current/beam timing and density scans in L-mode

- Low n_e / fast ramp + early beam -> High T_e, T_i, steep profiles
- Low n_e / slow ramp + late beam -> Less steep profiles
- High n_e / fast ramp + early beam-> Lower T_e (more difficult due to MHD)
- Increased power -> Steep profiles MHD 'fragile' ?
- Neon injection (low n_e) -> transport change w. ramp rate ?
- CHERS, USXR, turbulence (core reflectometry) data
- Main conditions to be later documented with MSE (3 kG attempt)

I_p ramp + beam timing change transport at low n_e

• Electron, ion, (momentum ?) 'ITB' with fast ramp+early beam

T_e profiles at 'delayed' times

Genuine difference in T_e profiles, not only due to beam delay
Current profile likely major transport knob

Higher density/ H-mode effects

T_e flattens immediately after density increase / H-mode onset
In L-mode increasing n_e or P_{beam} caused internal reconnections

TRANSP predicted q-profiles

Other hints of possible q-reversal

'Two-color' USXR modeling indicates off-axis T_e crash
Similar MHD in shots where MSE confirms high q(0)

Turbulence data brings puzzles ?

Fast ramp, early beam

Slow ramp, late beam

- Also ion ITB with fast ramp, with $\chi_{i \min} \approx$ where q_{\min} and large ω_{ExB}
- Large Δr_c where low χ_i and large ω_{ExB} ??
- With slow ramp Δr_c larger on the average
- Initial GS2 calculations predict turbulence suppression inside r < 0.6 (S. Kaye)

Summary

- Current ramp / beam timing scans at low n_e point to current profile as major knob for both electron and ion transport in NSTX
- TRANSP prediction suggests *strong* shear reversal needed to quench electron transport
- Earlier GS2 simulations indicate such behavior characteristic of ETG
- Role of density not yet clear (very few high n_e,high T_e shots): large energy/particle just facilitates overcoming strong instability ? μ-tearing ?
- Turbulence data brings new puzzles; fast particle MHD ?
- \bullet GS2/Gyro comparison of low $n_{\rm e}$ L-mode and H-mode regimes highly interesting
- Could perturbative electron transport experiments reveal more about origins of electron transport in NSTX ?