Characterization of ELMs and their Effects on NSTX using Multi-color Ultrasoft X-ray Imaging

K. Tritz, D. Stutman, L. Delgado-Aparicio, and M. Finkenthal

The Johns Hopkins University

R. Maingi (ORNL)

and the NSTX Team

NSTX Results Forum Sept. 19th-20th

Upgraded Bay G USXR System Provides Improved Spatial Coverage

- Imaging and tomographic reconstruction used to analyze plasma activity
 - Oscillatory events (MHD modes, islands)
 - Intermittent events (sawteeth, ELMs, reconnections)
 - Slow phenomena (rotating/locked modes, RWMs)

- Arrays utilize variable filter settings to change plasma region focus
 - 0.3µm Ti filter views primarily edge C emission
 - 5µm Be filter passes X-rays from bulk plasma
 - 100µm Be filter focuses on core plasma emission

Comparison of Filtered X-ray Contribution

Addition of High-speed Reentrant Array Improves Imaging Capabilities

- Reentrant diode array uses AXUV-16 from IRD
 - Fast, low-noise amplifiers have ~300kHz bandwidth
 - High speed PCI digitizer board samples at 600kHz
 - Necessary to resolve outboard plasma edge

Imaging of Type V ELMs show Poloidal Propagation

- ELM characterized by small edge perturbation
 - ELMs originate typically in lower plasma region
 - Propagate counter-clockwise poloidally
 - Have negligible effect on bulk plasma (T_e, W, ...)
 - Regime often contains intermittent Type I events

Type III ELM Correlates with Edge n_e/Impurity Crash

- Thompson measures drop in $T_e(r)$ on the order of 10-20% ($\Delta T_{core} \sim \Delta T_{edge}$)
 - n_e measured before, during, and after ELM shows little change (slight peaking?) pure conductive ELM? (i.e. n⊽T change only)
 - Neutron response lags T_e profile (decline by ~1ms, minimum by ~5ms)
 - Not all T_e perturbations reach core (e.g. shot 113665 @ 0.377s, 112581 @ 0.537s)

USXR Arrays Allow Tomographic Reconstruction of Type I ELM Perturbation

NS HOPKINS

(3) outil

Preliminary Analysis Indicates Intensity Crash Begins at the Inboard of the Plasma Volume

Reconstructed midplane intensity

NS HOPKI

- Perturbation reaches $\psi_N \sim 0.25$ (0.7m inboard, 1.27m outboard)
- Neutron flux drops ~1-3%

- ~50µs lag consistent with parallel transport times
- Cross-field transport appears slower, ~ few hundred µs
- Caveat
 - Spatial resolution limited by spline knots
 - Time resolution limited by SNR (\sim 50µs)
 - More events need to be analyzed

- Pre-ELM MPTS profiles used to fix n_e, n_z in USXR model
 - USXR profiles modeled using C, O and B coronal equilibrium radiative coefficients and magnetic surface mapping
- Ratio of Be 100 μ m/5 μ m filters sensitive function of T_e
 - 2-color modeling provides $T_e(R,t)$ with good temporal resolution
 - $T_e \text{ crash in pedestal ~40-80\%, core ~10-20\%} \left(\frac{\Delta T}{T_{core}} \neq \frac{\Delta T}{T_{edge}}\right)$
 - Core perturbation consistent with ~20% reduction in neutron flux

Propagated T_e(R) matches well with subsequent MPTS profile

- Limitations of technique
 - Crossed arrays allow only 1-D modeling
 - Assumption of no asymmetric density shifts or plasma movement
 - Set of multi-color arrays would alleviate these limitations

- Upgraded USXR set provies good plasma coverage
 - High-speed reentrant array boosts fast imaging capabilities
 - Some portions of plasma volume still under-sampled
- Various ELM phenomena have been imaged using the USXR arrays
 - imaging of Type V ELMs show poloidal propagation
 - Type III ELMs correlate with edge n_e perturbation and subsequent localized USXR emission bloom
 - Type I ELMs often accompanied by a global T_e perturbation
- Preliminary tomographic reconstruction analysis suggests Type I ELM crash begins at inboard of plasma
- Multi-color USXR modeling is a powerful tool for fast T_e profile analysis