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Magnetic Relaxation

• Electro-static drive: power supply magnetic energy.
• Helicity injection allows flux conversion: toroidal poloidal.
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Resonances in magnetic relaxation 

• Post-relaxation, modeled by Taylor state:

• What is B made up of?
– Vacuum field Bx by external current.
– Magnetic field Bp by internal plasma current.  

• Flux amplification: relative amplitudes of Bx and Bp.
• “k” is the tunable parameter controlled by 

the external power source.
• Two classes of resonance:

– without toroidal flux conserver: Jensen-Chu, 1984.
– with toroidal flux conserver: Tang-Boozer, 2005.
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Unconstrained resonance 

• Axisymmetry:
• G-S equation:

• Solution:
• Vacuum field:
• CK modes:
• Jensen-Chu resonances (1984):    
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[Tang and Boozer, PRL 94, 225004 (2005)]



Constrained resonance 
[Tang and Boozer, PRL 95, 155002 (2005)]

• Finite net toroidal flux constraint.
• In DCD:

Complication arises because:
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Constrained Resonance

Black:
Red (ST):

Green (RFP):
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Flux amplif. in flux-conserving mode

• Characteristic parameter: 

• Edge field reversal:

• Flux amplification factor 
at field reversal:
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Flux amplification versus k

• k dependence of A:

• Onset of flux amplif.
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q profile consideration

rkq profiles at       are that of  1χ A < M for ST-consistency
(M=10, Ar=14)



Summary

• ST-CHI under “spheromak” mode:
– Must operate in the vicinity of the primary “spheromak” 

resonance for meaningful flux amplification.
– Incomplete relaxation dominates the final answer.

• Tang and Boozer, PRL 94, 225004 (2005). 

• ST-CHI under flux-conserving mode:
– Vacuum toroidal to injector poloidal flux ratio, M, defines 

the upper bound.
– ST-relevant relaxed state can be obtained at k~0.7k1, with 

Flux Amplification Factor about half of M.
– This is obtained far from the actual up-shifted resonance, 

so more robust under incomplete relaxation.



Backups



Taylor state versus harmonic oscillators

Taylor state: linear PDE

Homogeneous bdy condition
– Eigenvalue problem.

• No externally imposed 
vacuum magnetic field.

Inhomogeneous bdy condition
– Can be transformed into 

inhomogeneous linear PDE.
– Driven problem. 

• With externally imposed 
vacuum magnetic field. 

Harmonic oscillator: linear 
ODE

Driven harmonic oscillator:

Linear resonance

BkB
rr

=×∇
02

0
22 =+ udtud ω

tfudtud ωω sin2
0

22 =+

tfu ω
ωω

sin22
0 −

=

Wavelength Frequency, but what about f?



Force-free modes: Chandrasekhar-Kendall

• Jensen-Chu-Taylor: 
– Impose flux-free as boundary condition?

• Three classes of CK modes (no vacuum 
magnetic field contribution):
– Axisymmetric CK modes with net toroidal flux.
– Axisymmetric CK modes with no net toroidal flux.

• Two conditions:
– Helical CK modes.

• One is enough:
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Spheromak-mode flux amplification

k=0 k=4.75: standard sp. k=5.15: flipped



Force-free modes: Yoshida-Giga

With vanishing net flux 
(auxilliary integral constraint):                            
– Two classes of flux-free CK 

modes.
– Axisymmetric flux-free Yoshida-

Giga modes
• flux-free because vacuum field from 

the flux conserver exactly cancels 
the flux of flux-carrying CK modes.

• Frequency upshifted from that of 
flux-carrying CK modes.

• Yoshida-Giga and flux-carrying CK 
modes are not independent mode 
families.
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Partially relaxed Plasma

• around 

• away from 
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[Tang and Boozer, PRL 94, 225004 (2005)]
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