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Magnetic Relaxation
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Electro-static drive: power supply = magnetic energy.
Helicity injection allows flux conversion: toroidal < poloidal.




Resonances In magnetic relaxation

o Post-relaxation, modeled by Taylor state:
VxB=kB
 What is B made up of?

— Vacuum field B, by external current. B - |,,# 0
— Magpnetic field B, by internal plasma current.

* Fluxamplification: relative amplitudes of B, and B,..
o “K”1s the tunable parameter controlled by

the external power source.  j =kB T
e Two classes of resonance: @ @
— without toroidal flux conserver: Jensen-Chu, 1984,

— with toroidal flux conserver: Tang-Boozer, 2005.

[Tang and Boozer, Phys. Plasmas 12, 102102 (2005)]
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Unconstrained resonance

Axisymmetry: B =G(y)Vop+VepxVy
G-S equation:
ANy+Gis, =N y-k(G,-k)y=0 _
Solution: 7=+ & @ @
Vacuum field: Az, =0, 7, =7 | e
CK modes: Az +k’z =07 1:=0. o
Jensen-Chu resonances (1984):

K
& = K2 _ K2 <Zvli>_ K2 _ K2 GO<Zi>

[Tang and Boozer, PRL 94, 225004 (2005)]




Constrained resonance
[Tang and Boozer, PRL 95, 155002 (2005)]

e Finite net toroidal flux v, constraint.

e INDCD: G(y)=G,—-ky

Ay —k(G,—ky)=
z,yt+“k’5d8
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Complication arises because:
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Mode has net toroidal flux




Constrained Resonance
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Flux amplif. in flux-conserving mode

[Tang and Boozer, Phys. Plasmas 12, 042113 (2005)]
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o Characteristic parameter:
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Flux amplification versus k
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e k dependence of A:
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e Onset of flux amplif.
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q profile consideration

1I’
45
0.8 - A=3
| 35
06 -
q qd
04 “51 \)\ A=S
. .\\“" ----------------------------------------
05 | 15 1 “NA=T ;
A T
=9
0 I 1 I L L - 05 L | | | 1 1 _
02 04 06 08 1 1.2 0.2 04 06 0.8 1 12
R R

g profiles at k, are that of y, A < M for ST-consistency
(M=10, A =14)



Summary

o ST-CHI under “spheromak” mode:

— Must operate in the vicinity of the primary “spheromak”
resonance for meaningful flux amplification.

— Incomplete relaxation dominates the final answer.
e Tang and Boozer, PRL 94, 225004 (2005).
e ST-CHI under flux-conserving mode:

— Vacuum toroidal to injector poloidal flux ratio, M, defines
the upper bound.

— ST-relevant relaxed state can be obtained at k~0.7k;, with
Flux Amplification Factor about half of M.

— This is obtained far from the actual up-shifted resonance,
so more robust under incomplete relaxation.



Backups



Taylor state versus harmonic oscillators

——
» Taylor state: linear PDE *» Harmonic oscillator: linear
S _ 1 ODE
VxB=kKB
d2u/dt’ + @?u =0
» Homogeneous bdy condition
— Eigenvalue problem. ¢ Driven harmonic oscillator:
* No externally imposed
vacuum magnetic field. d 2u/dt2 n wgu — fsin wt

» Inhomogeneous bdy condition

— Can be transformed into ¢
inhomogeneous linear PDE. -
Sy U=———>sinaot

— Driven problem. o — @

o With externally imposed
vacuum magnetic field.

¢ Linear resonance

Wavelength <>Frequency, but what about f?




Force-free modes: Chandrasekhar-Kendall

» Jensen-Chu-Taylor: A =0
— Impose flux-free as boundary condition?
e Three classes of CK modes (no vacuum
magnetic field contribution):
— Axisymmetric CK modes with net toroidal flux.
— Axisymmetric CK modes with no net toroidal flux.

» Two conditions:  B.i =0 B, =
_ o0 oQ
— Helical CK modes. 0
No imaYge current
Insulating

+ Oneisenough: B-fil =0
gap

[Tang and Boozer, Phys. Plasmas 12,
102102, (2005)]




Spheromak-mode flux amplification
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Force-free modes: Yoshida-Giga

> With vanishing net flux VxB =kB
auxilliary integral constraint): .
(auxilliary integ S [6.da, =0
— Two classes of flux-free CK .
modes. B-i| =0
— Axisymmetric flux-free Yoshida-

Giga modes

 flux-free because vacuum field from
the flux conserver exactly cancels
the flux of flux-carrying CK modes.

* Frequency upshifted from that of
flux-carrying CK modes.

* Yoshida-Giga and flux-carrying CK
modes are not independent mode
families.

[Tang and Boozer, Phys. Plasmas 12, 102102, (2005)]

Y, = constant



Partially relaxed Plasma o
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