

XP510: Solenoid-free inductive start-up with an outboard field-null and HHFW

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Jonathan Menard

NSTX Results Review December 12-13, 2005 PPPL – Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAERI Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

2004 camera images and reconstructions showed plasmas born on LFS with inward radial trajectory

 LRDFIT code used for reconstructions

STX

- I_{Vessel} \approx 10 \times I_P

- Careful control of B_Z after breakdown helped raise I_P from 10kA to 20kA
- More B_Z evolution optimization possible

GOAL: test PF coil programming changes

- 1. Decrease PF3 after t=0
 - Elongates plasma and reduces $dB_z/dR \rightarrow$ enhanced radial stability
 - Modest reduction in V_{LOOP}
- 2. If radial position evolution improves, increase PF5 ramp-rate after t=3ms
 - Assess trade-off between higher V_{LOOP} and larger B_Z
- 3. Increase PF2 after t=0
 - Maintains reduced dB_z/dR profile while further increasing elongation and B_z

Received ³/₄ run day - shot plan was for 1.5 days

First run day – goals and progress

- Reproduce shot 114405 which achieved 20kA plasma current
 - Got to 15kA reproducibly
- Decrease PF3 current after t=-3ms to reduce dB_Z/dR and increase κ
 - This worked increased current and duration at low RF power = 200kW
- Increase HHFW power incrementally to measure plasma response to higher P_{RF}
 - Try 750kW, 1MW, 1.25MW, 1.5MW
 - rt-ACQ fault trips shot above 300kW for most shots \rightarrow scan not done
- Scan VF ramp-rate following improved position control/heating.
 - This also helped increase current and duration following PF3 scan
- Assess impact of higher elongation by adding PF2 current ramp
 - Not done

Second ¹/₂ run day – not done

- Study the field null quality requirements for successful breakdown
 - Start from most successful (highest IP) discharge achieved above:
 - Scan TF in 0.25kG decrements below 3kG until plasma initiation fails
 - Increase DC PF2U and 2L currents in 0.5kA increments until plasma initiation fails

Need more HHFW pre-ionization power and further PF3 & 5 ramp-rate scans to increase I_{P}

- <u>This year</u>: using more HHFW straps for pre-ionization → up to 800kW
- Goal of XP: Adjust PF3 & 5 to increase/extend I_P - progress made:

- Max. plasma current increases with pre-ionization power
- Unfortunately, HHFW trips rt-DAQ module in NTC for P_{RF} > 300kW

• These waveforms project to $I_P = approx$. 25-30kA with higher P_{RF}