

XP530 Update: Stability of Different ELM Types in NSTX

R. Maingi Oak Ridge National Laboratory

NSTX Results Review Princeton, NJ Dec. 12, 2005

Execution of XP 530

- Goal: assess edge stability of different ELM types by measuring profiles just before and after ELMs
- Execution: obtained excellent before/after profiles
 - Mixed Type I + Type V ELM regime δ ~0.4, LSN
 - Type I ELM regime $\delta \sim 0.8$, DN
 - New Type V ELMs with drsep ≤ -0.3 cm and δ~0.8, DN (are these really Type II ELMs?)
 - Type I with transition to Type III ELMs δ ~0.4, DN
- Extensive data with Nova Photonics camera viewing lower divertor, FIReTIP, and new filterscope array (collaboration with N. Brooks, GA) assess ELM structure
- Elements presented in APS 2005 invited talk (Maingi)

Thomson Profiles Obtained Before and After Large, Type I ELM in Mixed Type I/V Discharge

Little ELMs Observed with Slight Downward Bias in High $\delta \sim 0.7$ Double-Null Shape (Type II or V?)

Page 5

Type V and Mixed (Type I + V) ELM regimes separated by β_N and/or pedestal v_*^e

Minimum v_{*}^e for Type V may decrease with shaping

 Perturbation extends ~1/3 toroidal circumference and propagates ≤ 1 toroidal revolution

Type V ELM observed as a single (or double) propagating perturbation in the scrape-off layer

254.707 ms (0.000 ms)

255.347 ms (0.640 ms)

255.517 ms (0.810 ms)

Type III ELM consists of multiple phases

(0.000 ms)

(0.182 ms)

(0.256 ms)

New filterscope system allows analysis of poloidal propagation time of ELM perturbation

XP 530 Analysis Plan

- Analyze pedestal characteristics with new edge Thomson channels
- Analyze edge stability with ELITE and DCON (others?); former requires adaptation of GA kinetic EFIT tools to NSTX (Osborne, Sabbagh in progress)
- Analyze SOL characteristics of ELMs, using filterscopes and Nova Photonics camera