Blob birth and transport in NSTX: GPI data analysis and theory

J.R. Myra, D.A. D'Ippolito, D.A. Russell Lodestar,
D.P. Stotler, S.J. Zweben, PPPL,
R. Maqueda, Nova Photonics, J. Boedo, UCSD,

T. Munsat, U. Colorado, and the NSTX Team

acknowledgements: B. LeBlanc (TS), S. Sabbagh (EFIT)

presented at the NSTX Results Review, Dec. 12 - 13, 2005

work supported by DOE grants DE-FG03-02ER54678 and DE-FG02-97ER54392

Basic goal: confront convective "blob" transport theory with gas puff imaging (GPI) data

- analytical blob theory
 - Krasheninnikov PoP 2001
 - D'Ippolito PoP 2002
 - Krasheninnikov J.PFR 2004
 - Myra PoP Plasmas 2005
 - ...
- numerical simulation
 - Yu PoP 2003
 - Russell PRL 2004
 - Garcia 2005

- GPI experiments (Zweben, Maqueda)
 - blob parameters (size a_b , n_e , T_e)
 - DEGAS-2 using He 5876 emission (Stotler)
 - radial velocity v_x

sample GPI frame

radial blob velocity v_x determines the competition
between parallel and perpendicular transport
plasma to the "wall" or to the divertor?

Theory predicts several characteristic regimes ⇒ blob velocities, & bounds

- NSTX and C-Mod explore different regions of parameter space (B ratio 20, n_e ratio 30 ...)
- Observed v_{blob} similar
- Characteristic v_{*} is similar
 v_{*} ~ 2 km/s

Important parameters affecting blob speed

- blob parameters: blob scale size a_b , n_e , T_e , η_{\parallel}
- geometry: $L_{\parallel,}$ [q_{eff} = L_{\parallel}/R], X-pt shear
- amplitude above background $\delta n/n_{bkgd}$

$$\Lambda = \frac{\nu_{ei} L_{||}}{\Omega_{e} \rho_{s}} = 1.7 \times 10^{14} \frac{n_{e} L_{||}}{T_{e}^{2}}$$

collisionality

$$\hat{a} \equiv \frac{a_b}{a_*} = \frac{a_b R^{1/5}}{L_{||}^{2/5} \rho_s^{4/5}} = 0.018 \frac{a_b B^{4/5} R^{1/5}}{L_{||}^{2/5} T_e^{2/5}}$$

 $v_* = c_s \left(\frac{a_*}{R}\right)^{1/2} = 5.1 \times 10^6 \frac{L_{\parallel}^{1/3} T_e^{1/10}}{R^{2/5} R^{3/5}}$

dimensionless blob scale size

Lodestar/Myra/NSTX/2005

GPI data analysis

- shot 112825
 - L mode 4.5 kG, 800 kA
 - 0.8 MW NBI
 - He puff (HeI filter)
- identify individual isolated blobs from the GPI movie
 - determine blob parameters
 - measure v_x from successive frames
 - compare with theoretical scalings

Observed blob velocity is bounded by theoretical minimum

sheath-connected blobs have minimum v_x of all the regimes

 $v_x \sim 2.9 \times 10^{10} \frac{qT_e^{3/2}}{a_b^2 B^2} f$ $f \sim \delta p/p \sim blob amp above background$

for spatial min set $q = L_{\parallel}/R = 1 \Rightarrow v_{\min}$

colors are individual blob "tracks"

Observed blob velocity is bounded by theoretical maximum

- blob scaling in the resistive ballooning regime gives maximum v_x
- expect and confirm that observed v_x << v_{max}
- simple theoretical estimates bound the observed blob velocity

v_{min} < v < v_{max}

Summary

- theory: identified the dependence of v_x on key blob parameters
- GPI data: observed blob v_x is bounded by theoretical estimates
- blob velocity is also influenced by effects outside scope of this study:
 - parallel blob structure?

Ongoing & future work

- application to more shots, and blob regimes
- numerical simulation with 2D turbulence code (D. Russell's SOLT code)
 - detailed blob dynamics
 - rate & statistics of blob generation
 - relation of blob size to $\gamma(k)$, nonlinear mode coupling
- Can we understand the dynamics of an individual blob with known properties?
- What properties are blobs created with and why?