Study of Type I ELM Systematics Using Soft X-ray Analysis on NSTX

K. Tritz, D. Stutman, L. Delgado-Aparicio, and M. Finkenthal

The Johns Hopkins University

R. Bell, R. Kaita, B. LeBlanc, L. Roquemore PPPL

> R. Maingi ORNL

S. Sabbagh Columbia University

and the NSTX Team

NSTX Results Review Dec. 12th, 2005

* Work supported by US DOE grant No. DE-FG02-99ER54523 at JHU and US DOE contract DE-AC02-76CH03073 at PPPL

- Imaging and tomographic reconstruction used to analyze plasma activity
 - Oscillatory events (MHD modes, islands)
 - Intermittent events (sawteeth, ELMs, reconnections)
 - Slow phenomena (rotating/locked modes, RWMs)

- Arrays utilize variable filter settings to change plasma region focus
 - 0.4µm Ti filter views primarily edge C emission
 - 10µm Be filter passes X-rays from bulk plasma
 - 100µm Be filter focuses on core plasma emission

What Causes Type I ELM Variability?

- Type I ELMs can cause a range of energy loss from ~3-5% to >20%
 - Large energy loss corresponds with global drop of T_e profile
- Global T_e perturbation possibly due to transport effects
 - Only small precursors observed on Mirnovs regardless of ELM size
 - No large MHD modes seen on SXR arrays
 - Time scales of profile perturbation ~ 100 's of μ sec
 - No corresponding global perturbation of n_e profile
- If perturbation is driven by transport effects, try to modify electron transport
 - Experiment run on NSTX to scan I_p and measure ELM perturbations

Large/Small Type I ELM perturbation vs. Ip

I _p	0.7 - 0.95MA
Β _T	0.45T
P _{NB}	5.5MW
W _{MHD} 180 - 200kJ	
β_{T}	10 - 15%

Qualitative difference seen in ELM perturbation

- Low I_p (0.7MA) \rightarrow small perturbation ΔW ~3-5%

- High I_p (>0.8MA) \rightarrow large perturbation Δ W~10-20%

SXR arrays show difference in penetration of ELM perturbation

ELMs Show Difference in T_e Related Signals

Small Type I ELM Shows Limited Penetration

Core electron density and temperature remains relatively unchanged

Large Type I ELM Perturbation Extends to Core

T_e perturbation reaches core after ~2ms

ELM Perturbation Shows I_p Threshold Effect between 0.7 - 0.8MA

- Below I_p threshold, ELM penetration limited to ~125-135cm
- Above I_p threshold, ELM penetration can extend to plasma core
- W_{MHD} and S_{neut} reductions correlate well to penetration distance (lin. corr. -0.9, -0.85 respectively), consistent with T_e perturbation

See: Stutman RP1.00027

- Experimental study will be continued at high TF to isolate I_p and q dependence
 - Help corroborate existence of threshold
 - Provide information to determine whether perturbation is transport related
- TOSXR system upgraded to higher time resolution for multicolor profiles
 - Multicolor measurements from same plasma volume will aid modeling
 - Direct inversion will improve measurement of radial propagation
- Further comparisons with pellet will help differentiate edge effect from subsequent perturbation
 - Measure radial propagation with controlled edge perturbation
 - Compare pellet cold pulse with ELM perturbation

Summary

- SXR system can be used to follow evolution of ELM perturbations
 - Type I ELMs can cause large T_e crash without corresponding n_e drop
 - Potential I_p threshold for "large"/"small" Type I ELM regime
- Global T_e perturbation possibly due to transport effects
 - Only small precursors observed on Mirnovs regardless of ELM size
 - No large MHD modes seen on SXR arrays
 - Time scales of profile perturbation ~ 100 's of μ sec
 - No corresponding global perturbation of n_e profile
- Future investigations to help distinguish between q and I_p effects
 - Higher B_T will allow comparison between q and I_p scan
 - Upgraded MPTS, MSE, and TOSXR diagnostics will improve analysis capability