NSTX X-Ray Imaging Crystal Spectrometer

Status Report, December 2005 - M. Bitter, K. Hill, and C. Bush

•The diagnostic is a development project, which is being funded by since 2002 the DOE Initiative for the Development of Advanced Diagnostics in Magnetic Confinement Fusion Energy Research.

•It is pursued in a collaboration with Alcator C-Mod, KBSI, KAERI, and TEXTOR.

• MAIN PURPOSE: MEASUREMENT OF TI-PROFILES

•On NSTX, the most important applications are measurements of Ti profiles in the absence of a neutral beam, i. e. in plasmas with pure Ohmic heating and RF heating - as a complementary diagnostic to CHERS.

•The spectrometer is ITER relevant for the diagnosis of Ti-profiles, and the instrumental concept has already been adopted for the design of X-ray crystal spectrometers on ITER. - It could become the main central Ti diagnostic on ITER if the neutral beams do not penetrate to the center of the plasma.

NSTX X-Ray Imaging Crystal Spectrometer

•The spectrometer consists of a spherically bent crystal and a 2D position-sensitive detector.

• On NSTX, it records spatially resolved spectra of ArXVII from an 80 cm high plasma cross-section.

•The spatial resolution in the plasma in a direction perpendicular to the NSTX mid-plane is 2.5 cm.

•In addition to Ti-profiles, the spectrometer can also provide profiles of Te and the ion charge state equilibrium.

•It is in principle also possible to measure profiles of the plasma rotation.

OUTLINE •RESULTS from OP-XMP-33: •Optimization of argon injection: Minute amounts of argon, which are undetectable by SPRED and negligible compared to intrinsic impurities, are sufficient to operate the diagnostic. •Documentation of spectrometer and detector performance: The throughput of the spectrometer is very high (several MHz), but detector limits count rate to 150 kHz •Spatially resolved spectra from Ohmic Shots: Profiles of resonance line w, Te, and ArXVI/ArXVII; the statistics not yet sufficient for Ti-profile measurements • FUTURE PLANS •Detector developments: Segmented MWPC and Pilatus II detector

•Experiments on NSTX and Alcator C-Mod

IV. 2D position-sensitive Detector

Sensitive area:	100 mm (X-axis)
	300 mm (Y-axis)
Entrance window : 100 µm Be foil	
29 supporting ribs : 2 mm wide	
	5 mm high
Gas mixture :	Xenon 78%
	C ₂ H ₆ 20%
	CF ₄ 2%

14 bit word for X, Y and Time information for single photon counts

Profiles of plasma Parameters from least-squares fit results with Vainshtein's Theory

•The spectrometer has a sufficiently high throughput for time-resolved measurements. Photon fluxes of several MHz can easily be obtained with minute argon puffs, which do not perturb the plasma. However, the throughput is limited by to < 400 kHz with the presently used multi-wire proportional counters.

•Two new detector concepts:

- (1) segmented multi-wire proportional counters, and
- (2) new silicon diode arrays, the so-called 'Pilatus' detector,

will be used in future experiments on NSTX and Alcator C-Mod

