

XP 526 Summary Characteristics of the "Enhanced H-mode" in NSTX

R. Maingi, Oak Ridge National LaboratoryWith input from: R. Bell, F. Levinton, D. Gates,B. LeBlanc, S. Kaye, J. Menard, S. Sabbagh,H. Yuh, and the NSTX Team

NSTX Results Review Princeton, NJ Dec. 13, 2005

Transition to an Enhanced H-mode with increased pedestal T_e and T_i observed in NSTX

Summary

- A second transition to enhanced confinement and high pedestal $T_i \le 650 \text{ eV}$ (and T_e from preliminary estimates) observed in handful of discharges during XP526
- Rather high dW/dt -> lead to high H89P ~ 2.6-2.7
- Triggered after global MHD mode
- Apparent power threshold: between 1 and 2 srcs
- Discharges had low/no current density over inner 15cm
- Terminated when $\beta_N \sim 4-4.5$
- Certain similarities to VH-mode

Page 6

Large Er near T_i inflection point, dominated by ∇P No Evidence of large island in V_{ϕ} Near T_i inflection

T_i steep gradient region extends from $\psi_N \sim 0.8-0.9$

LRDFIT04 with isothermal constraint

"Standard" Modified tanh fits show pedestal T_i increasing

MSE Shows Evidence for Formation of "Current Hole"

- At 0.12 s current profile is hollow but central current density is finite
- Small region of almost zero current density forms at 0.13 s
- Expands to about 15 cm diameter by 0.20s
- Central current density becomes positive again by 0.24 s

MSE Pitch Angle Profiles, $E_r(v_{\phi})$ Corrected

F. Levinton, H. Yu (Nova), M. Bell

XP526 - Enhanced H-mode Analysis Plans

- Pedestal analysis using new Thomson edge channels
- TRANSP analysis with LRDFIT or EFIT using isothermal contraint on T_e
- Identify characteristics of terminating MHD
- Global stability analysis including good fit to MSE channels