

# XP507: Early divertor and H-mode development for long pulse

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

**Jonathan Menard** 



NSTX Results Review December 12-13, 2005 PPPL – Princeton, NJ



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

### XP507 - Goals and Progress (Part 1)

- 1. Re-obtain FY04 long-pulse discharges at 4.5kG
  - Try to reproduce best 0.8, 0.9, 1.0 and 1.2 MA shots (700-900kA OK)
  - Document  $q(\psi,t)$  of existing early H-mode scenarios **DONE** 
    - Are we close to a "hybrid scenario" in any of these discharges? **YES**
- 2. Develop early evolution to divert ASAP
  - Attempt in PF1B + new PF1AL use DND if vertical control problematic
    - PF1AL + PF1B COMBINATION WORKED WELL
- 3. Find fastest sustainable early ramp to 0.5MA
  - Get to  $I_{\rm P} \geq 0.5 MA$  by 40-50ms (10-12MA/s) to help absorb beam
    - DISRUPTS AFTER  $I_P$  PAUSE if  $dI_P/dt > 6-7MA/s$  BEFORE PAUSE
  - Develop steady control of vertical position and X-point R,Z early in shot
    - VERY DIFFICULT BEFORE t = 60-70ms
  - Control inner and outer gaps > 5cm during entire ramp and flat-top
    - DONE
  - Open question is error field correction useful/needed for this ?
    - TRY IN 2006 HAVE BETTER UNDERSTANDING OF ERROR-FIELD

#### XP507 - Goals and Progress (Part 2)

- 4. Attempt to induce H-mode by t=50ms QUITE DIFFICULT
  - Scan current pause duration, NBI timing and power, and X-pt position
  - Early gas programming also important
- 5. Modify post-transition TM and ELM activity
  - Scan  $I_P$  ramp-rate after transition to avoid locking of TM
  - Scan bottom  $\delta$  and squareness and assess impact on MHD
    - RECOVERED TOLERABLE ELM REGIME AT HIGH KAPPA  $\rightarrow$  2.4
    - SLOW DENSITY RISE WITH THESE ELMS
- 6. Maximize plasma flat-top duration
  - Goal is  $\Delta t > 1s$  flat-top at or above 800kA as quiescent as possible
    - Need to lower  $B_T$  to < 4.5kG due to TF coil heating limit...
    - Is pulse length limit set by MHD, TF heating limit, or OH?
    - GOT TO 1.5s at 700-750kA, IP DURATION MAXIMIZED WHEN <u>OH</u> AND TF HEATING LIMITS ARE REACHED SIMULTANEOUSLY

Record discharge pulse-lengths have been achieved by operating with sustained H-mode and high  $\beta_N$ 

ISTX

- H-mode with small ELMS  $\Rightarrow$  reduced flux consumption, slow density rise
- $\beta_N > 4$  for  $\Delta t > 1s$  at high  $\beta_P > 1$  increases bootstrap fraction, lowers  $V_{LOOP}$





Longest duration discharges exceed 60% non-inductive current fraction during high-β phase

• 85% of non-inductive current is ∇p-driven = BS + Diamagnetic + PS



- TRANSP agrees with measured neutron rate to within  $\pm$  15% during high- $\beta$  phase
- Normalize at high  $\beta \Rightarrow$  TRANSP over-predicts neutron rate early and late in shot
  - Low-f MHD is present at these times  $\Rightarrow$  fast-ion diffusion and/or loss likely
  - Assessing impact of MHD on J<sub>NBI</sub> profile and q-profile evolution

### MSE diagnostic enables testing of models of inductive and non-inductive current drive sources

- Compute  $V_{LOOP}$  distribution/evolution directly from MSE-constrained fits
  - Long pulse-length and quiescent discharges needed for analysis
- Fit *T, p, Z<sub>eff</sub>* to  $\psi$ , compute  $\sigma_{NC}$ , J<sub>OH</sub> & J<sub>BS</sub> (Sauter model), add TRANSP J<sub>NBI</sub>

Sauter collisional NC model consistent with experimental  $I_{\rm P}$  and  $J_{\rm II}$ 



Comparing Sauter to NCLASS models to assess role of aspect ratio, impurities, etc...

# Neoclassical current profile analysis consistent with $J_{\parallel}$ -profile peaking and $q(0) \rightarrow 1$ at end of discharge



Under-predict total current during last 0.5s – due to model, or n=1 MHD?

