Using microwaves to study fast ion driven modes in NSTX

N.A. Crocker, S. Kubota, W.A. Peebles, G. Wang, T. Carter (UCLA);
E.D. Fredrickson, B.P. LeBlanc, J.E. Menard, S.M. Kaye, N.N. Gorelenkov, NSTX Team (PPPL)
NSTX Results Forum, Dec. 2005

Microwaves allow coherent modes to be probed in NSTX

- Reflectometry measures local density perturbation and "plasma displacement" (if motion incompressible)
 - Interpretation of reflectometry signal for coherent modes confirmed by comparison with BES data on DIII-D.
- Multiple reflectometers \Rightarrow radial structure of mode
 - test theory predictions
 - infer magnetic fluctuation amplitude (affects fast ion transport)
- Sensitive 1mm interferometer data also available
 - provides a survey of mode activity across entire plasma diameter
 - allows detection of modes localized on high field side
 - Provides additional constraint on spatial structure
- Plans to upgrade interferometer to multichannel radially viewing polarimeter
 - Allows measure of magnetic fluctuations

Fast Ion Modes dominate spectrum in NSTX

Figure from APS DPP 2005 invited talk by E.D. Fredrickson

- Compressional and Global Alfvén Eigenmodes (CAE and GAE)
 - 0.4 to > 2 MHz
 - Natural plasma resonance
 - CAE parallel $\delta B,\ \delta E$ is transverse
 - GAE mixed transverse/parallel δB
- Toroidal Alfvén Eigenmodes (TAE)
 - ~ 40 150 kHz
 - Natural plasma resonance
- Energetic Particle Modes (EPM)
 - $\lesssim 100 \text{ kHz}$
 - Mode defined by fast ion parameters
 - Frequency chirping common
 - Includes non-fishbones, n > 1
- Other types observable?

Microwaves used to probe mode activity:

- Reflectometry provides a *local* measure of mode density perturbation
- Interferometry provides a *sensitive internal monitor* of mode activity across the entire plasma diameter

Three-wave interactions sometimes observed to couple different types of modes

- For example, shot 113114: two types of modes interact, EPMs and higher frequency modes (HFMs of unknown mode type).
 - neighboring HFMs, (f, n) and (f', n), satisfy $(f', n) = (f + \Delta f_{HFM}, n + \Delta n_{HFM})$.
 - $\Delta f_{HFM} = f_{EPM} \sim 17$ kHz and $\Delta n_{HFM} = n_{EPM} = 1$, so $f' = f + f_{EPM}$ and $n' = n + n_{EPM}$
- Three-wave interactions can transfer energy between modes and broaden mode spectrum, affecting fast ion transport

50 GHz reflectometer phase spectrum

High bicoherence confirms three-wave interaction

- Mode triplets that satisfy matching conditions show high bicoherence
 ⇒ confirms three-wave interaction
 - Mode amplitudes and phases (A(t) and $\phi(t)$) extracted during t = 369.5 to 394 ms by filtering (complex demodulation)
 - Mode frequencies determined with 1 ms resolution
 - Signal filtered with 5 kHz bandwidth around mode frequency
 - Bicoherence given by $B[\psi, \psi', \psi'] = |\langle \psi' \psi'' \psi^* \rangle|/(\langle |\psi' \psi''|^2 \rangle \langle |\psi|^2 \rangle)^{1/2}$, where $\psi(t) = A(t) \exp(i\phi(t))$ and $\langle \rangle$ is average over time
 - Bicoherence tests coherence of $\psi'\psi''$ with ψ
 - Bicoherence ranges from 0 to 1. High bicoherence needed for interaction

n of	n of	Bicoherence	Bicoherence
HFM ₁	HFM ₂	(50 GHz)	(42 GHz)
5	6	0.3117	0.4333
6	7	0.561	0.7691
7	8	0.6497	0.8816
8	9	0.6451	0.8841
9	10	0.6257	0.8458
10	11	0.6389	0.7182
11	12	0.4055	0.5985

Bicoherence of mode triplets (noise level ~ .09) (B[HFM₁,EPM_{n=1}, HFM₂])

Three-wave interactions influence mode energies and thereby fast ion loss

- EPMs, TAEs active during fast ion loss events:
 - EPM: Harmonics, low frequency and toroidal mode number; f ~ 24 kHz, 48 kHz, n = 1,2
 - TAEs: higher frequencies and mode numbers;
 f ~ 80 200 kHz, n = 3 8
 - uniformly spaced in f and n: $\Delta f \sim 25$ kHz, $\Delta n = 1$
- Three-wave interactions couple n = 1 EPM to pairs of TAEs:
 - neighboring TAEs satisfy f and n matching requirements to couple with n = 1 EPM
 - matching mode triplets show high bicoherence

Bicoherence of mode triplets (noise level ~ .06) (i.e. B[TAE₁,EPM_{n=1}, TAE₂]) (t = 345 - 360 ms; ~ 20 kHz bandwidth)

n of TAE ₁	n of TAE ₂	Bicoherence (50 GHz)	Bicoherence (42 GHz)
4	5	0.5587	0.3865
5	6	0.603	0.4423
6	7	0.5745	0.4341

Three-wave interactions can couple disparate scales (TAEs or EPMs to CAEs)

- CAE spectrum broadens thru sideband generation during fast ion loss events (drops in neutron rate)
- broadening appears to result from three-wave coupling
- bicoherence measurements indicate three-wave coupling occurs

Bicoherence of δb

 $B(f_1, f_2)$

800

freq2 (kHz)

850

900[']

200

150

freq1 (kHz) 001

50

0

700

750

• Bicoherence of "x" defined here as B(f1,f2) = $|\langle x(f_1)x(f_2)x^*(f_1+f_2)\rangle|/(\langle |x(f_1)x(f_2)|^2\rangle\langle |x(f_1+f_2)|^2\rangle)^{1/2}$

time (ms)

Reflectometry measurements utilized together with soft xray to reconstruct structure of EPM (n = 1 kink)

SXR data: Johns Hopkins Univ. group Figures from APS DPP 2005 invited talk by E.D. Fredrickson

Preliminary measurement of TAE structure and comparison with theory

- single TAE amplitude is of the order δn/n ≈ 1%.
- node in radial structure (180° phase change) consistent with NOVA modeling of the higher n TAE

Figure from APS DPP 2005 invited talk by E.D. Fredrickson

Preliminary comparison of measured CAE structure with theory (NOVA-K code)

- Reflectometer measurements of CAEs can validate simulations and theory (NSTX)*
 - Figure shows reflectometer measurements (+ marks) of f = 0.81 MHz CAE vs simulated CAE f = 0.93 MHz CAE (f = 0.81 MHz CAE does not agree in structure)
 - Hall effect may be needed for better agreement: frequency shift and radial structure change
 - Compressional effects are critical: $\delta n/n \not\approx \xi_n$
 - Error bars are large 20 60%

*N.N. Gorelenkov, et al., 9th IAEA TCM on Energetic Particles in Magnetic Confinement Systems, November 9 - 11, 2005, Takayama, Japan

Cross-Machine Studies of Fast Ion Driven Modes

 Cross-machine studies of fast ion driven modes is an on-going effort

For example:

- TAEs: W.W. Heidbrink, et al., Plasma Phys. Control. Fusion vol. 45 (2003) pg. 983
- CAEs: N.N. Gorelenkov, et al., 9th IAEA TCM on Energetic Particles in Magnetic Confinement Systems, November 9 - 11, 2005, Takayama, Japan

CAE measurements on DIII-D

 UCLA Team uses microwaves to study fast ion driven modes in DIII-D and NSTX ⇒ contributing to cross-machine studies

Summary

• Three-wave interactions observed

- Interactions couple various sets of modes: TAEs to EPMs, TAEs to CAEs and CAEs to EPMs. Also couple EPMs to an unknown type of mode, "HFM".
- Interaction occurs during fast ion loss events \Rightarrow can influence fast ion confinement
- Preliminary measurements of mode structure
 - EPM (n=1 kink): consistent with soft x-ray measurement of structure
 - TAE: radial node observed consistent with NOVA predictions for high-n TAEs
 - CAE: preliminary comparison with NOVA-K suggests code modification need for better agreement
- Contributing to cross-machine studies of modes: multiple microwave diagnostics
- Future plans
 - Polarimetry magnetic fluctuations
 - More reflectometry channels improved spatial coverage

Microwaves used to probe coherent modes in plasma

- reflectometer makes localized measurements:
 - measures density perturbation and "plasma displacement" (if motion incompressible); tested against BES in DIII-D
 - core localized difficult for other diagnostic
 - can only reach low-field side
 - multiple reflectometers \Rightarrow radial mode structure
 - infer magnetic fluctuation amplitude (affects fast ion transport)

50 GHz reflectometer phase spectrum

• interferometer probes whole plasma

- detect localized modes on high field side
- in conjunction with reflectometer, test theory
- look for reverse shear Alfvén eigenmodes, which are localized

evidence of three-wave coupling

not considered in fast ion mode theory