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Microwaves allow coherent modes to be probed in NSTX

* Reflectometry measures local density perturbation and “plasma
displacement” (if motion incompressible)

* Interpretation of reflectometry signal for coherent modes confirmed by
comparison with BES data on DIII-D.
* Multiple reflectometers = radial structure of mode

* test theory predictions

* infer magnetic fluctuation amplitude (affects fast ion transport)

e Sensitive 1mm interferometer data also available

* provides a survey of mode activity across entire plasma diameter
* allows detection of modes localized on high field side

* Provides additional constraint on spatial structure

* Plans to upgrade interferometer to multichannel radially viewing
polarimeter

* Allows measure of magnetic fluctuations



Fast Ion Modes dominate spectrum in NSTX
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Compressional and Global Alfvén
Eigenmodes (CAE and GAE)

* 0.4 to > 2 MHz

* Natural plasma resonance

» CAE parallel 6B, 3E is transverse
* GAE mixed transverse/parallel 3B

Toroidal Alfvén Eigenmodes (TAE)

+ ~ 40 - 150 kHz
* Natural plasma resonance

Energetic Particle Modes (EPM)

e <100 kHz

* Mode defined by fast ion parameters
* Frequency chirping common

* Includes non-fishbones, n > 1

Other types observable?

Microwaves used to probe mode activity:

» Reflectometry provides a /ocal measure of mode density perturbation

« Interferometry provides a sensitive internal monitor of mode activity

across the entire plasma diameter



Three-wave interactions sometimes observed to
couple different types of modes

* For example, shot 113114: two types of modes interact, EPMs and
higher frequency modes (HFMs - of unknown mode type).

* neighboring HFMs, (f,n) and (f',n), satisfy (f',n)) = (F+Af ey, n+ANEy ).

*Afiem = fepm ~ 17 kHz and Anyey = gy = 1, so F= f+ fpyuand 0’ = n + ngy

» Three-wave interactions can transfer energy between modes and broaden
mode spectrum, affecting fast ion transport

50 6Hz reflectometer and edge magnetic spectra 50 6Hz reflectometer phase spectrum
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High bicoherence confirms three-wave interaction

* Mode triplets that satisfy matching conditions show high bicoherence
= confirms three-wave interaction

» Mode amplitudes and phases (A(t) and ¢(t)) extracted during + = 369.5 to 394 ms by
filtering (complex demodulation)

* Mode frequencies determined with 1 ms resolution

* Signal filtered with 5 kHz bandwidth around mode frequency

* Bicoherence given by B[y, y",y"] = Ky 'y y*)/(|lyyp” PX|vIH*2.
where y(1) =A(Hexp(i¢(1)) and () is average over time

* Bicoherence tests coherence of y'y” with ¢

* Bicoherence ranges from O to 1. High bicoherence needed for interaction

Bicoherence of mode triplets (noise level ~ .09)
(B[HFM,,EPM_ _,, HFM,))

n of n of Bicoherence Bicoherence
HFM, | HFM, (50 GHz) (42 GHz)
5 6 0.3117 0.4333
6 7 0.561 0.7691

7 8 0.6497 0.8816
8 9 0.6451 0.8841
9 10 0.6257 0.8458
10 11 0.6389 0.7182
11 12 0.4055 0.5985




Three-wave interactions influence mode energies and
thereby fast ion loss

 EPMs, TAEs active during fast ion loss

events:

« EPM: Harmonics, low frequency and toroidal
mode number; f ~ 24 kHz, 48 kHz, n = 1,2

* TAEs: higher frequencies and mode numbers;
f~80-200kHz, n=3 - 8

* uniformly spaced in f and n: Af ~ 25 kHz, An = 1

» Three-wave interactions couple n = 1
EPM to pairs of TAEs:

* neighboring TAEs satisfy f and n matching
requirements to couple with n = 1 EPM

» matching mode triplets show high bicoherence

Bicoherence of mode triplets (noise level ~ .06)
(i.e. BITAE,,EPM__,, TAE,])
(t =345 - 360 ms; ~ 20 kHz bandwidth)

n of n of Bicoherence Bicoherence
TAE, TAE, (50 GHz) (42 GHz)
4 5 0.5587 0.3865
5 6 0.603 0.4423
6 7 0.5745 0.4341
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Three-wave interactions can couple disparate
scales (TAEs or EPMs to CAEs)

» CAE spectrum broadens thru sideband generation

during fast ion loss events (drops in neutron rate) Neutron Rate

. . (with fluctuation bursts marked)
* broadening appears to result from three-wave coupling
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Reflectometry measurements utilized together with soft x-
ray to reconstruct structure of EPM (n = 1 kink)

* Inverted SX emission profile

and EFIT equilibrium, used to

"invert" soft x-ray data.
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Preliminary measurement of TAE structure and
comparison with theory

* single TAE amplitude is of
the order on/n = 1%.

e node in radial structure
(180° phase change)
consistent with NOVA
modeling of the higher n TAE

NSTX 113544_0.2688_136.7kHz
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Preliminary comparison of measured CAE structure
with theory (NOVA-K code)

e Reflectometer measurements of CAEs

can validate simulations and theory

NSTX)*
re,(a.u) ( )
* Figure shows reflectometer measurements

(+ marks) of f = 0.81 MHz CAE vs simulated

CAE f = 0.93 MHz CAE (f = 0.81 MHz CAE

does not agree in structure)

on (a.u) * Hall effect may be needed for better
agreement: frequency shift and radial
']L structure change

 Compressional effects are critical: dn/n % E,

) rla * Error bars are large 20 - 60%

*N.N. Gorelenkov, et al., 9th IAEA TCM on Energetic Particles in Magnetic Confinement
Systems, November 9 - 11, 2005, Takayama, Japan



Cross-Machine Studies of Fast Ion Driven Modes

e Cross-machine studies of fast ion CAE measurements on DIII-D
driven modes is an on-going effort 50 - reflectometer phase

For example: ——

* TAEs: W.W. Heidbrink, et al., Plasma Phys.
Control. Fusion vol. 45 (2003) pg. 983

« CAEs: N.N. Gorelenkov, et al., 9th IAEA
TCM on Energetic Particles in Magnetic
Confinement Systems, November 9 - 11,

2005, Takayama, Japan 6b magnetlc IOOpS
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Summary

e Three-wave interactions observed

« Interactions couple various sets of modes: TAEs to EPMs, TAEs to CAEs and CAEs to
EPMs. Also couple EPMs to an unknown type of mode, "HFM".

* Interaction occurs during fast ion loss events = can influence fast ion confinement

* Preliminary measurements of mode structure

* EPM (n=1 kink): consistent with soft x-ray measurement of structure
* TAE: radial node observed consistent with NOVA predictions for high-n TAEs

» CAE: preliminary comparison with NOVA-K suggests code modification need for better
agreement

 Contributing to cross-machine studies of modes: multiple microwave
diagnostics

 Future plans

* Polarimetry - magnetic fluctuations

* More reflectometry channels - improved spatial coverage
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Microwaves used to probe coherent modes in plasma

 reflectometer makes localized
measurements: 250
» measures density perturbation and “plasma

displacement” (if motion incompressible); tested 200
against BES in DITI-D S

* core localized - difficult for other diagnostic 21501
: , o
* can only reach low-field side D
«=100

» multiple reflectometers = radial mode structure

* infer magnetic fluctuation amplitude (affects 50
fast ion transport)

50 GHz reflectometer phase spectrum
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