

Review of NSTX Lithium Experiments: XP-718 (Pellet Injection) and XP-719 (Surface Coatings)

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

H. W. Kugel and NSTX Team

NSTX Results Review July 23-24, 2007 PPPL, Princeton, NJ

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR. Czech Rep **U** Quebec

Motivation

• NSTX research on lithium-coated plasma facing components is the latest step in the decade-long, DOE multi-institutional research program to develop lithium as a plasma-facing system that can withstand the high heat and neutron fluxes in a DT reactor.

• NSTX lithium research is also aimed towards sustaining the current non-inductively in H-mode plasmas which requires control of both <u>wall recycling</u> and <u>impurity influxes</u>.

• The 3 Phase NSTX 5-Year Lithium Plan for Particle Control and Power Handling is moving aggressively toward the 3rd Phase:

I. Lithium Pellet Injector (2005-2007) ⇐ 07 results this talk II. Lithium Evaporator (2006-2007) ⇐ 07 results this talk III. Liquid Lithium Divertor (Installation 2008)

ODNSTX

 In FY05, LPI was done into LSN Helium conditioning shots, and the subsequent D LSN <u>L-mode</u> exhibited a strong density reduction effect lasting 1-2 shots, but NO effect seen without the Helium conditioning shots.

• In FY07, following a 3.4 mg Li pellet into an ohmic He plasma, the reference NBI D plasma exhibited a decrease in density and an increase in neutron rate. The following reference plasma reverted back to the pre-Li conditions.

• Single lithium pellets were injected directly into reference plasmas with one or both NBI sources notched for 50ms. Pellet arrival time varied

• Notching a single NBI source yielded small early decrease in n_e and improvements in confinement and neutron rate during subsequent 2-source phase in this sequence before locked mode termination

After 3.4 mg LPI into Ohmic He Shot, $n_{\rm e}$ changed on the 1st Ref D LSN H-Mode Shot and a Returned to Normal on the 2nd

REFERENCE SHOT Shots: 123148 1st SHOT AFTER 3.4 MG LPI 123153 2nd SHOT AFTER 3.4 MG LPI

• 1st 2NBI D LSN reference plasma following a 3.4 mg Li pellet into an ohmic He plasma, exhibited:

- decrease in $D\alpha$ and $n_e(25\% @300ms)$

• The following D reference shot reverted to the pre-Li conditions.

• This result is similar to FY06 LITER result which achieved H-mode n_e decreases without He Discharge Conditioning

Summary of LPI Results 2004-2007

ODNSTX

He Ω Conditioning Discharges	HeGDC Between Discharges	LPI Application	Reference Deuterium Discharge	Density Effect	Other Effects
NO	Yes	Directly into D Reference Discharges	CSL L-mode LSN L-mode DND L-mode	None	Impurity Reduction
6-8 Conditioning Discharges	Yes	Into He Ω discharge of same shape	CSL L-mode LSN L-mode	X3 decrease X2 decrease @5x10 ¹² cm ⁻³	Lasted 2-3 shots
No	Yes	Into He Ω discharge of same shape	LSN H-mode	n _e decreased 25%@5x10 ¹³ cm ⁻³	Lasted 1 shot Increase in τ_e , SE, S _n
No	Yes	Directly into NBI pwr notch	LSN L-mode	None	Penetration sensitive to NBI off time
No	Yes	Directly into NBI pwr notch	LSN H-mode	Small early n _e decrease	Terminated by Locked Mode

• Surfaces pre-coated with lithium pumped diverted deuterium plasmas

• H-mode plasmas even without wall conditioning sensitive to lithium deposition

XP-719: Increasing Lithium Evaporation On NSTX PFCs Decreased Dα, C II, and O II Luminosity

C II Luminosity Decreased on Lower Divertor and on Midplane

Lithium Evaporation Effect on Stored Energy

 Lithium Evaporation Increases Stored Energy at Constant NB Power • Lithium Evaporation Significantly Increases Electron Stored Energy at Constant NB Power

Effect on W_{MHD} Is Dominantly Through Increase in W_e

⇒PPPL

Lithium Evaporation Effect on Ions

• Lithium Evaporation Affects Ion Stored Energy Only Slightly

• On Average, Central Temperatures Are Not Increased by Lithium

Density Peakedness Is Not Affected by Lithium Broadening of T_e Profile Appears To Be Responsible for Improvements in W_e

TRANSP Analysis Finds Performance Enhancement Obtained in H-mode Discharges with Lithium

w/o Lithium 123474 w/ Lithium 123507

S. Kaye

D NSTX

S. Kaye

• Typical H_{NSTX} Enhancements ~1.3-1.8

Discharges With High Central Radiated Power Occurred More Frequently and With Increasing Intensely with Shot Number

Issue: Is the behavior of the central radiated power due to

- improving fuel and impurity confinement?
- machine operations, LITER operation?

• This result is consist with the deposition of typical plasma impurities on the Midplane Coupon and no metal output from LITER.

Summary and Conclusions

 \bigcirc NSTX

- Although understanding the affect of evaporated lithium on recycling in NSTX needs further work, there is a clear and reproducible effect on
 - *decreases* in oxygen impurities, plasma density, inductive flux consumption, and ELM frequency (including their complete suppression in H-mode plasmas)
 - *increases* in electron temperature, ion temperature, energy confinement, and DD neutron rate.
- Additional phenomena and observations, such as the below need additional work:
 - the continued density rise,
 - the duration of the lithium coatings,
 - spatial distribution of the lithium coatings,
 - increases in core metal impurity radiation,
 - Helium retention following HeGDC and HeGDC requirements,
 - diagnostic window depositions and operational issues.

