Reduced simulations of boundary turbulence in NSTX

J.R. Myra, D.A. Russell, D.A. D'Ippolito, *Lodestar*, R. Maqueda, *Nova Photonics*, V. Soukhanovskii, *LLNL*, S.J. Zweben, *PPPL*

- theory background

- summary of experiment
- turbulence simulations
- future work

 \Rightarrow

- basic blob physics
- SOL width & convection
- divertor gas puff

presented at the NSTX Results Review, July 23 - 24, 2007

Blob velocity bounds verified from the GPI imaging analysis

- analytical blob velocity bounds verified from the GPI imaging analysis (Myra et al., IAEA Chengdu, 2006)
- parameter controlling regime is collisionality \Rightarrow disconnection
- increasing collisionality should speed blobs up & broaden SOL

Proposal: increase blob velocity (⇒ SOL width) by X-point gas puff

- piggy-backed on XP-708
 - "Divertor heat flux reduction and detachment" [V. Soukhanovskii]
 - with mid-plane GPI [R. Maqueda]
- expected blob velocity increase not (yet) observed
 - still checking some issues
- possible increase in blob production rate
 - flux increased but due to blob production rate not blob speed ??

SOLT (<u>Scrape-off-Layer Turbulence</u>) 2-D fluid turbulence code

- nonlinear coupled equations for
 - density
 - temperature (in progress, some results here are for T = const)
 - potential (vorticity)
 - zonally-averaged momentum
- features
 - momentum conserving: $\langle nv_v \rangle$ vs. d/dx $\langle v_v \rangle$ competition
 - drift-wave, sheath, curvature, Kelvin-Helmoltz instabilities
 - order unity fluctuations, blobs ...
- use the SOLT code to
 - check analytical blob velocity scalings
 - compute blob production rate

SOLT turbulence code reproduces generic features of boundary turbulence observed in experiments

SOLT code movie frames show blob formation and ejection

- coherent blobs are formed
- blob ejection is intermittent
- order unity density fluctuations in far SOL
- visual appearance of movies approximates GPI

log(n)

Simulations show that radial blob velocity *should* increase with disconnection (gas puff, detachment, ...)

- sheath conductivity present in base case (connected/attached)
- turn off sheath conductivity to model disconnection/detachment

Vx/Cs	mean	std-dev
base	0.040	0.019
disconnected	0.083	0.066

- turbulence code confirms previous analytical scaling estimates of blob velocity
- ... with significant spread in PDF from $v \cdot \nabla \nabla^2 \Phi$
- v_x increase not seen in experiment

Suppression of zonal flows \Rightarrow increased blob production

Summary

- SOLT code
 - can reproduce many generic experimentally observed features of SOL turbulence (PDFs, skewness profiles, freq. spectra)
- Blob speed-up with disconnection
 - seen in SOLT run, and analytical theory
 - not seen in experiment
- Fundamental prediction of blob theory & simulation remains to be confirmed by experiment
 - Future work: solve this puzzle
 - better shots to compare (was ref. shot attached & puff shot detached?)
 - compare ELMs
 - challenge to theory (is there a problem, or compensating effect)
- Blob production rate increased when zonal flows suppressed in simulations (possibly relation to experiment, neutral friction?)
- Also with these tools can:
 - characterize v_x and a_b distributions
 - develop synthetic GPI diagnostic

Backup slides

Electrical circuit of blob

- increased parallel resistivity ($\eta_{||} \propto \Lambda$) increases circuit resistance
- current loops are forced to close locally at midplane or at X-point
- blobs disconnect from divertor plate sheaths and move faster
- cold gas puff in X-pt region could accomplish this
 - directly observe v_r increase with GPI
 - should increase SOL width
- disconnection, increased \perp thermal flux, related to SOL density limit physics:
 - D.A. D'Ippolito and J.R. Myra, Phys. Plasmas **13**, 062503 (2006).
- electrical disconnection vs. thermal (detachment)

Characteristic blob size and speed

- blob size and speed are often given relative to Bohm units, ρ_s and c_s
- theoretical invariance arguments suggest a different *natural* scaling taking into account the physics of
 - cross-field ion polarization currents (vorticity advection)
 - parallel current flow into sheaths
 - grad-B and curvature driven currents

$$a_* = L_{\parallel}^{2/5} \rho_s^{4/5} / R^{1/5}$$
 $v_* = c_s \left(\frac{a_*}{R}\right)^{1/2}$

- $a_b > a_* \Rightarrow$ parallel current to sheath balances curvature
- $a_b < a_* \Rightarrow$ ion polarization current balances curvature
- v_{*} is the E×B drift speed (due to curvature-induced charge polarization) for a blob with a_b = a_{*}
- a_{*} is the most stable blob size

Equations of the SOLT model

vorticity

$$\partial_{t} \nabla^{2} \widetilde{\phi} = \left\{ -\mathbf{v}_{E} \cdot \nabla \nabla^{2} \phi + \alpha_{DW} \frac{\overline{T}^{3/2}}{\overline{n}} \left\{ \phi - T \ln(n) \right\} + \alpha_{sh} \sqrt{T} \left[1 - e^{\Lambda_{B} - \phi/T} \right] - \frac{\beta}{n} \partial_{y}(nT) + \hat{\mu} \nabla^{4} \phi \right\}$$

density

$$(\partial_t + \mathbf{v}_E \cdot \nabla)\mathbf{n} = \alpha_{DW} \overline{T}^{3/2} \{ \phi - T \ln(n) \} - \alpha_{sh} n \sqrt{T} e^{\Lambda_B - \phi/T} + S_n + D\nabla^2 n e^{\Lambda_B - \phi/T} + S_n + S_n +$$

temperature

$$(\partial_t + \mathbf{v}_E \cdot \nabla)\mathbf{T} = -\alpha_{sh} s_E \mathbf{T}^{3/2} e^{\Lambda_B - \phi/\mathbf{T}} + S_T + D\nabla^2 \mathbf{T}$$

zonal momentum

$$\partial_{t} \langle nv_{y} \rangle + \partial_{x} \langle nv_{x}v_{y} \rangle = \int dx \langle \alpha_{sh} n\sqrt{T} \left[1 - e^{\Lambda_{B} - \phi/T} \right] \rangle + \overline{\mu} \partial_{x}^{2} \langle v_{y} \rangle + S_{\phi}$$